Устройство фотоаппарата. Пленочные и цифровые фотокамеры

© 2015 сайт

Объектив следует считать ключевым узлом оптического прибора под названием фотоаппарат. Всё верно: не матрицу, а именно объектив. Фотография – это изображение, и не что иное, как фотографический объектив формирует это изображение на светочувствительном материале. Матрица лишь преобразует созданное объективом изображение в цифровую форму.

Фотограф не обязан быть экспертом в области прикладной оптики, но наличие некоторого представления о том, как работает объектив вашей фотокамеры, не только не помешает вашему творческому росту, но и поможет сделать фотосъёмку более осознанной и управляемой.

Конструкция объектива

С основной задачей фотографического объектива – собрать свет, идущий от снимаемой сцены, и сфокусировать его на матрице или плёнке фотоаппарата – может справиться обычная двояковыпуклая линза. Однако качество изображения при этом будет весьма посредственным из-за обилия оптических аберраций . Чтобы обеспечить оптимальное качество картинки, в оптическую схему объектива вводятся дополнительные линзы, корректирующие световой поток, исправляющие аберрации и придающие объективу требуемые свойства. Число оптических элементов в современных объективах может в отдельных случаях достигать двух десятков и более. Элементы могут быть объединены в группы и все вместе они должны действовать как единая собирающая оптическая система.

Помимо оптического блока, т.е. системы линз, расположенных в определённой последовательности, конструкция объектива включает в себя также ряд вспомогательных механизмов, обеспечивающих наводку на резкость, управление диафрагмой, изменение фокусного расстояния (в зум-объективах), оптическую стабилизацию и пр.

Оправа, т.е. корпус объектива, соединяет все его компоненты воедино, а также служит для крепления объектива к фотоаппарату.

Хочется подчеркнуть, что фокусное расстояние не является в буквальном смысле «длиной» объектива и лишь косвенно указывает на его линейные размеры. Физически объектив может быть как длиннее, так и короче своего фокусного расстояния. Следует понимать, что из-за особенностей конструкции многих современных объективов их задняя главная плоскость может располагаться как в пределах системы линз, так и за её пределами.

В случае если задняя главная плоскость вынесена вперёд, фокусное расстояние объектива будет превышать его физические размеры. Такой объектив называется телеобъективом . Практически все современные длиннофокусные объективы являются телеобъективами, что позволяет уменьшить их габариты.

Если задняя главная плоскость расположена в середине объектива, то фокусное расстояние оказывается меньше расстояния от переднего элемента объектива до заднего фокуса. Таковы нормальные и умеренно короткофокусные объективы.

И, наконец, задняя главная плоскость может лежать позади объектива. В этом случае фокусное расстояние будет короче заднего фокального отрезка , т.е. расстояния от заднего оптического элемента до заднего фокуса. Такие объективы называются ретрофокусными объективами или объективами с удлинённым задним отрезком . Зачем нужна столь сложная схема? Ведь габариты она явно не экономит. Дело в том, что наличие поворотного зеркала в зеркальных фотоаппаратах налагает жёсткие ограничения на минимальную допустимую величину заднего фокального отрезка. Иными словами, зеркало не позволяет приблизить объектив вплотную к матрице или плёнке, а это значит, что короткофокусные объективы для зеркальных фотокамер должны проектироваться по ретрофокусной схеме.

Мерой светопропускающей способности объектива является диафрагменное число или число диафрагмы , представляющее собой отношение между фокусным расстоянием объектива и диаметром отверстия диафрагмы. Например, при фокусном расстоянии объектива 200 мм и диаметре отверстия диафрагмы 50 мм их отношение будет равно: 200 ÷ 50 = 4. Последнее обычно записывается как f/4 и означает, что диаметр отверстия диафрагмы в четыре раза меньше фокусного расстояния объектива.

Что будет, если мы уменьшим диаметр отверстия, скажем, до 25 мм? Число диафрагмы окажется равным: 200 ÷ 25 = 8. Таким образом, чем меньше относительное отверстие, тем больше диафрагменное число.

Почему говорят именно об относительном отверстии, а не просто о диаметре отверстия диафрагмы? Потому, что нас в данном случае не интересуют конкретные значения фокусного расстояния и диаметра отверстия, а лишь отношение между ними. Число диафрагмы – величина безразмерная. Независимо от своего фокусного расстояния все объективы, диафрагма которых установлена на f/8, будут пропускать одинаковое количество света. При этом очевидно, что фактический диаметр отверстия будет тем больше, чем больше фокусное расстояние объектива – главное, чтобы их отношение оставалось неизменным.

Для того чтобы уменьшить количество света, проходящего через объектив, в два раза, т.е. на одну ступень экспозиции (), необходимо в два раза уменьшить площадь отверстия диафрагмы. Его диаметр при этом уменьшится в √2 раза. В связи с этим диафрагменные числа, отстоящие друг от друга на одну ступень, различаются в √2, т.е. примерно в 1,414 раза, и образуют следующий стандартный ряд: f/1; f/1,4; f/2; f/2,8; f/4, f/5,6; f/8; f/11; f/16; f/22; f/32; f/45; f/64.

Минимальное доступное значение диафрагмы, т.е. максимальный размер относительного отверстия конкретного объектива, принято называть его светосилой .

В большинстве современных объективов используется механизм т.н. «прыгающей» или «моргающей» диафрагмы. Суть его в том, что вне зависимости от того, какое число диафрагмы выбрано для съёмки, диафрагма остаётся полностью открытой до самого момента спуска затвора и только тогда закрывается до заранее выбранного значения. После каждого снимка диафрагма автоматически возвращается в открытое состояние. Это позволяет осуществлять кадрирование, экспозамер и наводку на резкость при максимальной величине относительного отверстия (минимальном числе диафрагмы) и соответствующей ему максимально яркой картинке в видоискателе. В случае же если у фотографа возникает желание визуально оценить глубину резкости будущего кадра, диафрагму можно принудительно закрыть до рабочего значения, используя кнопку репетира диафрагмы.

Байонет

Объектив крепится к фотоаппарату посредством байонетного соединения. На хвостовике оправы объектива имеются лепестки (обычно их три), которым соответствуют пазы во фланце камеры. При установке объектива хвостовик вставляется во фланец и запирается поворотом на небольшой угол. Несимметричность лепестков исключает затрудняет неправильную ориентацию байонета. Чтобы отсоединить объектив необходимо нажать на кнопку и повернуть его в обратную сторону. См. «Смена объектива ».

По сравнению с резьбовым соединением байонет обладает двумя основными преимуществами: во-первых, смена объективов происходит быстрее, а во-вторых, обеспечивается более точная ориентация объектива относительно камеры, что необходимо для оптимального совмещения электрических контактов и механических приводов.

Помимо своей основной функции – крепления объектива к камере, – байонет должен также обеспечивать и функциональную связь между ними, согласовывая работу диафрагмы, автофокуса, стабилизатора и прочих устройств. Байонеты большинства современных фотографических систем (Canon EF, Sony E, Fujifilm X) не предполагают какой-либо механической связи между камерой и объективом – обмен информацией осуществляется исключительно через электронный интерфейс. В более традиционных байонетах (например, Nikon F) управление диафрагмой (а для старых моделей объективов ещё и автофокусом) реализовано посредством механических приводов.

Важнейшей характеристикой байонетного крепления является его рабочий отрезок . Рабочий отрезок – это расстояние от опорной поверхности объектива (или опорной поверхности фланца камеры) до фокальной плоскости, т.е. до плоскости матрицы или плёнки. Длина рабочего отрезка зависит от особенностей конструкции фотоаппарата. Так, у зеркальных камер рабочий отрезок значительно больше, чем у беззеркальных, поскольку поворотное зеркало не позволяет сделать корпус камеры слишком плоским.

Не следует путать рабочий отрезок с задним фокальным отрезком. Рабочий отрезок – это фиксированный параметр байонета, и его величина неизменна для всех камер и объективов в рамках данной фотографической системы. Задний фокальный отрезок – параметр конкретного объектива, и его величина может отличаться от величины рабочего отрезка, как в большую, так и в меньшую сторону, в зависимости от модели.

Фокусировка

В исходном положении объектив сфокусирован на бесконечность, т.е. в фокальной плоскости оказывается изображение бесконечно удалённого объекта. Чтобы сфокусировать объектив на более близких объектах, необходимо увеличить дистанцию между задней главной плоскостью объектива и плоскостью матрицы или плёнки. Иными словами, объектив должен быть как бы выдвинут навстречу объекту съёмки.

В простейших объективах с небольшим количеством элементов наводка на резкость осуществляется перемещением всего оптического блока внутри оправы объектива. Иногда движется только передняя линза. Хуже всего, когда она ещё и вращается при фокусировке, поскольку это весьма затрудняет использование поляризационных и градиентных фильтров.

В более сложных объективах применяется внутренняя фокусировка. Внешние размеры объектива в таком случае остаются неизменными, а смещение оптического центра достигается перемещением независимой группы линз внутри объектива. Частным случаем внутренней фокусировки является задняя фокусировка, при которой за наводку на резкость отвечает задняя группа элементов.

Большинство современных объективов предполагают использование автоматической фокусировки . Обычно в оправу автофокусных объективов встроен кольцевой электродвигатель (ультразвуковой или шаговый), который и приводит в движение фокусировочную группу линз. Исключение составляют лишь некоторые классические автофокусные объективы Nikon и Pentax, не имеющие собственного фокусировочного мотора. Мотор в данном случае встроен в камеру, а передача крутящего момента происходит посредством механической муфты.

Зум-объективы

Зум-объективами принято называть объективы с переменным фокусным расстоянием. Конструкция зум-объективов значительно сложнее конструкции дискретных объективов и включает ряд дополнительных оптических элементов, взаимное перемещение которых не только изменяет фокусное расстояние объектива, но и компенсирует возникающие при этом дополнительные оптические аберрации.

Отношение между максимальным и минимальным фокусным расстоянием зум-объектива называется его кратностью. Например, кратность зум-объектива с диапазоном фокусных расстояний 24-70 мм приблизительно равна: 70 ÷ 24 ≈ 3, что позволяет говорить о нём как о 3-х кратном зуме.

Оптический стабилизатор

В объективах, снабжённых оптическим стабилизатором изображения, одна из линз может при помощи электромагнитного привода перемещаться в плоскости, перпендикулярной оптической оси объектива, компенсируя тем самым вибрацию фотоаппарата и предотвращая смазывание изображения.

Об особенностях устройства и практическом применении стабилизированной оптики можно прочесть в статье: «Оптический стабилизатор. Нюансы использования IS и VR ».

Светофильтры

Практически все объективы могут использоваться вместе со светофильтрами . Чаще всего фильтры накручиваются на объектив спереди, для чего в оправе объектива предусмотрена специальная резьба. Однако в тех случаях, когда передняя линза объектива отличается необычайно большим диаметром или излишне выпуклой формой, традиционное использование фильтров физически затруднено, в связи с чем и резьба для фильтров может попросту отсутствовать. Существуют два основных подхода к решению этой проблемы. Супертелеобъективы обычно снабжаются выдвижной обоймой, в которую можно вложить стандартный светофильтр небольшого диаметра, после чего обойма вставляется внутрь объектива через специальную прорезь. Многие же сверхширокоугольные объективы в принципе не совместимы со стеклянными фильтрами и вместо этого имеют на хвостовике зажимы для тонких фильтров из пластиковой плёнки. Очевидно, что как внутреннее, так и заднее расположение светофильтров исключает возможность использования прозрачных фильтров для защиты передней линзы от грязи и царапин, предъявляя к вашей аккуратности повышенные требования.

Спасибо за внимание!

Василий А.

Post scriptum

Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект , внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.

Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.

Цифровой фотоаппарат это современный инструмент дающий хороший способ создавать яркие и интересные фотографии, способные производить на человека сильные впечатления от цифровых фотографий. Но чтобы раскрыть творческий потенциал, нужно знать и уметь пользоваться цифровой зеркальной фотокамерой.




На фото: Цифровой зеркальный фотоаппарат и его узлы в разрезе

Устройство цифрового зеркального фотоаппарата (азы)

Фотографировать цифровой зеркальной фотокамерой, на сегодняшний день — это здорово. Но чтобы получать превосходный результат, нужно быть у «руля», а значит знать устройство цифрового фотоаппарата и контролировать все его возможности и работу его узлов.

Наверное хватит лирики, давайте начнем. Так что же в черном корпусе цифровой фотокамеры? Какое оно устройство цифрового фотоаппарата ?


На фото: разрез - схема с описанием основных узлов, элементов и механизмов цифровой зеркальной фотокамеры


Как я рассказывал раньше на странице об элементах и узлах пленочных фотокамер и принципиальных отличий цифрового фотоаппарата от пленочного — нет. Вот все главные узлы цифровой камеры:

    Объектив;

  1. Диафрагма;

    Выдержка;

    Фотовспышка;


Все основные элементы и узлы в цифровом фотоаппарате остались неизменными, всего лишь чуть-чуть подверглись конструктивным изменениям. Да и сама форма корпуса фотоаппарата остается неизменной более 150 лет. Да, в цифровом фотоаппарате добавилось много современных узлов - примочек позволяющих делать снимки красивее.


Цифровая зеркальная фотокамера — это фотоаппарат, созданный на всех основных принципах работы одно объективной, зеркальной фотокамеры, которые использовались раньше в пленочной фотографии.



Цифровые камеры в основном работают совершенно идентично пленочным, но в отличие от пленки в них используют светочувствительный элемент - цифровое запоминающее устройство матрицу и процессор управления элементами диафрагма, выдержка, вспышка, другие узлы и т.д.

Эти фотоаппараты оснащены множеством дополнительных функций (обеспечиваемых микроэлектроникой), которые невозможно было раньше использовать в пленочных камерах.
Таково влияние времени!


Процесс съемки цифровым зеркальным фотоаппаратом


Перед тем как нажать на кнопку спуска затвора, вы обязательно смотрите на объект съемки в видоискатель или на жидко кристаллический дисплей и то что вы там видите (куда навели объектив), то и сфотографирует (зафиксирует) ваша цифровая фотокамера, а именно:

  • Когда вы нажали на кнопку спуска затвора, определенное количество светового пучка проходя через объектив попадает на матрицу (светочувствительный элемент) фотоаппарата.
  • Матрица «захватив» свет, формирует цифровое изображение, одновременно обрабатывая и синтезируя информацию о яркости, пропорциях и количестве цветов передаваемых световым потоком.
  • Количество света попавшего на матрицу определяет степень открытия или прикрытия диафрагмы, а время, за которое свет освещает матрицу определяет скорость затвора — выдержка

Ну вот и весь принцип работы цифрового фотоаппарата вкратце.

- Матрица цифрового фотоаппарата -

Цифровые камеры выпускают различные производители, но все они используют два распространенных типа матриц :

  1. Полнокадровые;
  2. Усеченные;



Фотоаппарат с полнокадровой матрицей



Фотоаппарат с усеченной матрицей


Как мы видим на фотографиях полнокадровая матрица визуально больше усеченной рсположенной в фотоаппарате.
В фотоаппаратах высокого класса используются так называемые полно кадровые матрицы. По размерам эти сенсоры совпадают с одним кадром 35 мм пленки пленочного фотоаппарата.

В остальных фотоаппаратах, так называемых «мыльницах» используют сенсоры других размеров и называются они усеченными матрицами.

Матрица цифрового фотоаппарата различается форматами:

  • Full Frame

FF Матрица
(35х24 мм.)

APS-H Матрица
(29х19 - 24х16 мм.)

APS-C Матрица
(23х15 - 18х12 мм.)


Как видно из фотографий сенсоры с индексами C и H размером меньше чем полнокадровые.
Эта аббревиатура расшифровывается так:
FF - Full Frame переводится как полный кадр

APS - Advanced Photo System и переводится как «усовершенствованная фото система».
Символ Н — High Definition (усеченная матрица Высокого определения с кроп фактором К = 1,3 - 1,5).

Символ С — Classic (классическая усеченная матрица с кроп фактором К = 1,6 - 2,0).

Как расчитывается кроп фактор матрицы вашего фотоаппарата?


Очень просто, нужно разделить длинну каждой из сторон полнокадровой матрицы на кроп фактор матрицы вашего фотоаппарата и вы получите реальный размер матрицы вашего фотоаппарата.

Для того чтобы понять разницу этих матриц относительно друг к другу, а также увидеть, как видят эти матрицы один и тотже кадр с одного расстояния через одинаковый объектив фотоаппарата можно на фотографии ниже.




Одним словом из фотографии расположенной выше можно понять что, полнокадровая матрица видит "широкий" кадр, а "кропнутые" матрицы видят кадр уже.

По качеству изображения усеченные матрицы совершенно не уступают полно кадровым матрицам. А в практике применения — фотоаппаратами с усеченной матрицей пользуются многие фотографы профессионалы. Камеры с усеченной матрицей позволяют делать больший наезд (приближать объект съемки увеличивая его), чем полно кадровые — это положительное качество при портретной съемке.


Достоинства и недостатки полнокадровых матриц

Достоинства
  1. Высокая детализация кадра за счет большего количества светочувствительных элементов на матрице большого размера. На таких матрицах мельчайшие детали объекта съемки видны значительно лучше чем на «кропнутой» матрице.
  2. Большой размер окна видоискателя, за счет зеркала размером больше чем размера самой матрицы.
  3. Большой размер одного пикселя размещенного на матрице (это позволяет сделать матрицу более чувствительной к световому потоку).
  4. Высокая глубина резкости (это обеспечивается фактическим большим размером одного пикселя расположенного на матрице).
  5. Сохранность большого процентного отношения изображения к кадру (это касается портретной фотосъемки).
  6. Минимальное количество цифрового шума на фотографии (это касается прежде всего высоких значений ISO).

Недостатки
  1. Стоимость фотоаппарата (полнокадровые фотоаппараты значительно дороже).
  2. Трудность съемки на удаленных дистанциях (здесь выигрывают фотоаппараты с «кропнутыми» матрицами).
  3. Большой вес фотоаппарата (это в основном из-за большого размера и веса объективов к полноформатным фотоаппаратам).
  4. Узконаправленная специализация съемки (это относится к тому что, полнокадровые фотоаппараты рассчитаны в основном на съемку с близкого расстояния, а например фотоаппараты с «кропнутыми» матрицами имеющие кроп фактор К= 1,5 являются универсальными для съемки с близкого и дальнего расстояния).
  5. Большое количество разнообразных узлов этих фотокамер (По статистике большое количество механических и электронных узлов требует более внимательного отношения к технике).

Заключение


Из этого короткого обзора можно сделать такой вывод:

  1. Принцип работы цифровых и пленочных камер одинаков, разница лишь в том что, светочувствительным элементом у старых камер являлась фотопленка, а у цифровых камер — электронный сенсор матрица и большее количество дополнительных узлов.
  2. Остальные узлы участвующие в фотосъемке у обоих типов камер работают совершенно одинаково.
Цифровые фотоаппараты подразделяются, как и пленочные на:
  • Профессиональные камеры.
  • Любительские камеры.
У обоих типов фотоаппаратов есть возможность смены объективов (кроме «мыльниц»), но из-за размеров установленной матрицы (у профессиональных — полно кадровая, а у классики (любительских) — усеченная) объективы не являются обратно заменяемыми, а именно:
  • объективы для полно кадровой матрицы подходят для съемки на фотоаппаратах с усеченной матрицей.
  • объективы разработанные для фотоаппаратов с усеченной матрицей не подходят для съемки на камерах с полно кадровой матрицей.

Добиться идеального качества снимка можно как с профессиональной, так и с классической (любительской) цифровой фотокамерой. Как говориться самое главное желание хорошо снимать и немного труда.

Какую камеру лучше выбрать (полнокадровую или с кроп фактором) решать вам, в зависимости от ваших задач в фотографии. Подсказать можно только лишь одно — если вы планируете использовать камеру как источник дохода, то конечно полнокадровую. Если вы просто любитель занимающийся семейным фото, то конечно фотоаппарат с кроп фактором матрицы и без дополнительных элементных узлов.

На этом короткий обзор Устройство цифрового фотоаппарата - Основные элементы наверное закончим. Более досконально и подробно о Конструкции и узлах цифрового зеркального фотоаппарата (продолжение) можно будет прочитать в ближайших публикациях.



P.S. Все фотографии этой статьи прошли предварительную цифровую обработку и оформлены в объемные багетные фоторамки АРТ Студии Вектор . Если Вас интересуют услуги по цифровой обработке и улучшение качества ваших снимков, со всем перечнем наших услуг выполняемых со снимками вы можете ознакомиться в разделе наши услги перейдя в него нажав на кнопку ниже. С каталогом наших онлайн багетных фоторамок студии, можно ознакомиться в разделе сайта фоторамки нажав на соответствующую кнопочку ниже.

Посмотреть фотографии различных жанров оформленных в нашей студии, Вы можете в разделе сайта наши работы перейдя в галерею работ нажав тоже на нужную кнопочку ниже.

Фотоаппарат был изобретен 1861 году для получения и хранения неподвижных изображений. Первоначально в приборе они фиксировались на специальных пластинах, а позднее на пленке. С 70-х годов 20-го века начинается интенсивное развитие цифровой техники. Классические (пленочные) фотографические аппараты постепенно начинают отходить на второй план. На сегодняшний день их практически вытеснили цифровые фотокамеры. Эти современные приборы позволяют получать высококачественные снимки. Наибольшее распространение получили зеркальные, беззеркальные и компактные модели. Для занимающихся созданием фотографий рекомендуется использовать первые два типа изделий. При этом для такого рода деятельности необходимо знание устройства фотоаппарата и принципа его действия.

Принцип работы цифровых и пленочных фотографических аппаратов, в общем, идентичен. Сильно упрощенную его схему можно представить следующим образом:

  • после нажатия кнопки открывается затвор и отраженный от объекта свет поступает через объектив внутрь фотографического аппарата;
  • в результате происходит формирование картинки на светочувствительном элементе (матрице или пленке) – фотографирование;
  • затвор закрывается, после чего аппарат готов далее делать снимки.

Весь описанный процесс фотографирования проходит за доли секунды. У разных моделей фототехники из-за их конструктивных особенностей детальное его протекание различается.

В отличие от пленочных фотоаппаратов в цифровых вместо фотохимического сохранения изображений применяется фотоэлектрический способ . Его суть заключается в том, что световой поток преобразуется в электрический сигнал, который после записывается на носитель информации (цифровое запоминающее устройство).

Запечатленное изображение сразу доступно для просмотра на жидкокристаллическом дисплее, что очень удобно для оценки полученного результата. Его можно сохранить на компьютере или ноутбуке для дальнейшего просмотра, хранения, редактирования, передачи (например, по сети Интернет) либо печати на фотобумаге с использованием принтера.

Основные элементы цифрового фотоаппарата

Зеркальный цифровой фотоаппарат относится к наиболее совершенной по конструкции и функциональным возможностям обширной группе фототехники. На его примере удобно рассматривать устройство фотографических аппаратов в целом. Связано это с тем, что можно ознакомиться с конструктивными элементами, которые встречаются и у других видов данной техники.

Основными частями зеркального цифрового фотографического аппарата являются:

  • объектив;
  • матрица;
  • диафрагма;
  • затвор;
  • пентапризма;
  • видоискатель;
  • поворотное и вспомогательное зеркала;
  • светонепроницаемый корпус.

Детальная схема строения фотоаппарата представлена ниже. Из нее видно, что рассмотренные основные части являются непосредственно задействованными в процессе получения изображения.

Без наличия дополнительных деталей, например, фотовспышки, карты памяти, аккумуляторных батарей, жидкокристаллического дисплея, различных датчиков также невозможна работа фотокамеры и получение качественных фотографий. Но эти конструктивные элементы напрямую не связаны с принципом функционирования фототехники.

Объектив фотокамеры

Объектив представляет собой оптическую систему, которая состоит из расположенных внутри оправы линз. Они бывают стеклянными или пластиковыми (в дешевых моделях техники). Световой поток, проходящий сквозь линзы, преломляется и формирует изображение на матрице. Хорошие объективы позволяют получать резкие, четкие фотоснимки без искажений.

Новые модели объективов могут быть оснащены электронными схемами , управляющими, например, оптическим стабилизатором, диафрагмой. Но на старых фотокамерах электроника может не функционировать.

Главными характеристиками объективов являются:

  1. Светосила – параметр, показывающий соотношение между яркостью объекта, который отображается, и освещенностью изображения, получаемого в фокальной плоскости (на матрице) с помощью оптической системы.
  2. Фокусное расстояние – это расстояние в миллиметрах от оптического центра объектива до метки фокальной плоскости (фокуса), в которой расположена матрица. От него зависит угол обзора (поле зрения) оптики и размеры получаемого изображения.
  3. Зум – способность оптической системы приближать удаленные объекты (увеличивать их изображение). Он определяется отношением фокусных расстояний (максимального к минимальному).
  4. Разновидность байонета.

На маркировке объективов обычно первое число (или пара чисел) указывает фокусное расстояние, а второе (либо пара) – светосилу. Классификация объективов по фокусному расстоянию и углу обзора показана на нижеследующей фотографии. Более универсальным считается стандартный тип оптики.

Важно! Световая эффективность объективов зависит от светосилы. Чем она больше, тем фототехника лучше и, соответственно, стоит дороже. Оптическая система, обладающая большей светосилой, позволяет делать снимки на более коротких выдержках, чем с меньшим данным показателем.

Крепление оптики

Объективы крепятся к корпусу фотоаппарата с помощью байонета. Он представляет собой специальное высокоточное соединение (часто стандартного типа). Конструктивно этот крепежный узел может быть выполнен в виде накидной гайки, оснащенной прорезями, либо выступов на оправе с соответствующими им на корпусе пазами. Существуют модели изделий, где байонетное соединение представлено крупной резьбой, имеющей короткий ход.

К основным характеристикам байонета относятся:

  • диаметр, который влияет на светосилу объектива;
  • рабочий отрезок (схематически представлен на фото ниже), определяющий диапазон рабочих фокусных расстояний.

Важно! Рабочие отрезки фотокамеры и объектива должны совпадать. От этого напрямую зависит возможность установки оптики разных систем через переходник на фотографический аппарат.

Диафрагма и ее функции

Диафрагма – это механизм, предназначенный для регулирования светового потока, попадающего на матрицу цифрового фотоаппарата . Она находится между линзами внутри объектива.

Конструктивно деталь состоит из набора накладывающихся один на одного лепестков (обычное их количество составляет от 2 до 20 штук), которые бывают разной формы. Величина их взаимного сдвига относительно базового положения определяет размер образующегося круглого (при полном открытии) или многоугольного (при частичном) отверстия. Благодаря тому, что механизм открывается и закрывается, изменяется количество поступающего света. Дорогая и качественная оптика оснащается многолепестковыми диафрагмами .

От диаметра отверстия диафрагмы зависит ГРИП (глубина резкости изображаемого пространства): чем размер круга меньше, тем больше ГРИП. Такая взаимосвязь позволяет фотографам при съемке создавать различные эффекты, например, отделять от фона какой-либо объект.

Кроме рассмотренных показателей, размер отверстия диафрагмы оказывает влияние на такие параметры получаемого изображения:

  • аберрацию (погрешность либо ошибку в передаче картинки), значение которой наименьшее, когда максимально закрыта диафрагма;
  • дифракцию (огибание световыми волнами препятствий), выражающуюся в снижении способности оптики воспроизводить изображение объектов, которые расположены вблизи (показатель называется разрешением объектива), при уменьшении размера пропускающего свет отверстия;
  • виньетирование (уменьшение освещенности, происходящее от центра снимка к его краям), наиболее ярко проявляющееся при максимально открытой диафрагме.

Диафрагму принято обозначать буквой «f». Число, расположенное с ней рядом, указывает диаметр отверстия. При этом, чем число меньше, тем больше размер отверстия, обозначаемый им. Диаметр 2,8 на данное время является максимальным на большинстве объективов. Дифракция с аберрацией уравновешены в диафрагмах от f/8 до f/11. При этом объектив имеет максимальное разрешение.

У зеркальных фотокамер современного производства объективы оснащены ирисовыми диафрагмами прыгающего типа. Они закрываются до установленного значения лишь в непосредственный момент съемки. Чтобы иметь возможность оценивать глубину резкости изображения при определенном диаметре отверстия, многие зеркалки оснащают репетиром . Он представляет собой механизм принудительного закрытия диафрагмы до рабочего значения.

Работа зеркал

Свет, прошедший через отверстие диафрагмы, попадает на зеркало. Там поток делится на 2 части. Одна из них поступает на фазовые датчики (отражаясь от вспомогательного зеркала), которые предназначены для определения того, находится или нет изображение в фокусе. Затем система фокусировки выдает команду линзам на перемещение. При этом они становятся так, чтобы снимаемый объект оказался в фокусе. Такая самонастройка называется фазовым автофокусом . Он является одним из основных преимуществ зеркалок перед беззеркальными цифровыми фотокамерами. Чтобы увидеть зеркало внутри корпуса, нужно просто снять оптику.

Второй поток попадает на фокусировочный экран (матовое стекло). Благодаря этому фотограф может сразу оценить глубину резкости будущего снимка и точность фокусировки. Выпуклая линза, расположенная над экраном фокусировки, увеличивает размер получаемой картинки. Зеркало убирается после нажатия спуска, позволяя свету без препятствий поступать на матрицу.

Целая категория фототехники представлена моделями с неподвижным полупрозрачным зеркалом. Его использование позволяет пользоваться автофокусом не только при фотосъемке, но также во время проведения видеосъемки в режиме «Live View». Также возможно непрерывное визирование.

Функции и разновидности затворов

После нажатия спуска также срабатывает затвор, который установлен между зеркалом и матрицей. Назначением его является регулирование доступа на матрицу света. Время, в течение которого затвор открыт, называется выдержкой. За этот временной отрезок происходит процесс экспонирования.

Затворы на зеркалках бывают двух типов:

  • механическим (наиболее распространены);
  • электронными (цифровыми).

Конструктивно механические затворы представляет собой вертикально или горизонтально расположенные 1 либо 2 непрозрачные для светового потока шторки. Основными характеристиками таких затворов являются скорость и лаг. Под последним понимают быстроту открытия шторок после того, как нажат спуск.

Открытие и закрытие шторок происходит очень быстро (за доли секунды) за счет электромагнитов или пружинок. Скорость затвора – это промежуток времени, который требуется, чтобы получить снимок после нажатия спуска. Механические затворы имеют предел срабатывания. Выдержки примерно с 1/8000 секунды получают, используя уже цифровые затворы.

Электронный затвор – это не какое-либо отдельное устройство, а принцип регулирования экспозиции (количества поступающего света) матрицей. Выдержка в данном случае представляет собой временной промежуток между ее обнулением и моментом считывания информации с нее. Использование электронных затворов характеризуется возможностью достижения более коротких выдержек без применения механических дорогостоящих аналогов.

Более совершенными считаются модели фотографических аппаратов с комбинацией электронного и механического типов затворов. При этом первый используется при коротких выдержках, а второй – при длительных. Также механический затвор защищает матрицу от попадания на нее пыли.

Количество поступающего внутрь камеры света, регулируемое диафрагмой, и выдержка, устанавливаемая затвором, лежат в основе процесса фотографирования. Благодаря сочетанию этих показателей в различных вариантах фотографами достигаются разные эффекты.

Пентапризма и видоискатель

Световой поток, пройдя через фокусировочный экран, попадает в пентапризму. Она состоит из двух зеркал . Первоначально от поворотного зеркала изображение поступает в перевернутом виде. Зеркала пентапризмы переворачивают его, выдавая на видоискатель итоговую картинку в нормальном виде.

Видоискатель является устройством, позволяющим фотографу предварительно оценивать кадры. Основными его характеристиками являются:

  • светлость (зависит от качества и светопропускных свойств стекол, из которых сделан);
  • размер (площадь);
  • покрытие (в современных моделях достигает 96-100%).

Важно! Оценивать кадры фотографу легче на больших по размеру видоискателях с более светлыми стеклами. Но они устанавливаются только на моделях выше среднего уровня.

Схема движения светового потока в видоискателе фотоаппарата

Зеркальные фотокамеры могут быть оснащены видоискателями следующих видов:

  • оптическими;
  • электронными;
  • зеркальными.

Оптические видоискатели наиболее распространены. Такие устройства представляют собой расположенную возле объектива систему линз. Их преимуществом является отсутствие потребления энергии, а недостатком – некоторое искажение изображения, попадающего в кадр.

Электронные устройства – это миниатюрный жидкокристаллический (ЖК) экран. Изображение на него передается с матрицы камеры. Электронным видоискателем можно пользоваться даже при сильном солнечном свете, потому что он расположен внутри корпуса. Но во время работы он потребляет электроэнергию

Зеркальные видоискатели считаются лучшими, потому что способны обеспечить наиболее высокую контрастность, качество контуров объектов. Такие устройства перешли к цифровым фотографическим аппаратам от пленочных аналогов. Видимое фотографом изображение формируется поворотным зеркалом.

Существуют модели без видоискателей. В них визирование изображений фотографом происходит с помощью ЖК-монитора. Недостатком таких экранов является то, что практически невозможно рассмотреть на них что-либо при ярком солнечном свете. Также у мониторов может быть небольшое разрешение.

Матрица зеркальной цифровой фотокамеры

Матрица зеркалок – это аналоговая либо цифро-аналоговая микросхема с фотосенсорами. Последние представляют собой светочувствительные элементы , которые преобразуют энергию света в электрический заряд (пропорционален по величине яркости освещения). Таким способом матрицы переводят оптическое изображение в аналоговый сигнал либо в цифровые данные. Которые затем поступают по цепочке преобразователь-процессор-карта памяти.

Важно! За получение картинок в цвете отвечает светофильтр. Он установлен перед микросхемой.

Основными характеристиками матриц являются:

  • разрешение;
  • размер;
  • светочувствительность (ISO);
  • соотношение между сигналом и шумом (скоплением хаотично расположенных точек разных цветов, появление которых связано с недостатком освещенности объектов).

Под разрешением понимают количество светочувствительных элементов в детали, измеряемое в современных приборах мегапикселями (соответствует миллиону фотосенсоров). Чем больше их число, тем лучше будут переданы на фото мелкие детали.

От размера матрицы , измеряемого по диагонали, зависит количество фотонов, которое она может уловить, а также присутствие шумов на получаемом изображении. Чем этот параметр больше, тем лучше (шумов меньше). Диагональ детали в востребованных моделях фототехники составляет 1/1,8 -1/3,2 дюйма.

Светочувствительность матриц находится в пределах 50-3200. Большие значения чувствительности позволяют проводить съемку при плохой освещенности, например, в сумерках либо в ночное время. Но при этом возрастает уровень шума. Оптимальным уровнем ISO считается его значения от 50 до 400. Увеличение чувствительности сопровождается возрастанием шумов.

В зеркальной фототехнике распространение получили две разновидности матриц:

  • полнокадровые (совпадают размером с кадром пленки 35 мм);
  • усеченные (с уменьшенной диагональю).

Матрицы отличаются друг от друга форматами, которые бывают следующими:

  • Full Frame – полнокадровые (35×24 мм);
  • APS-H – матрицы профессиональных фотоаппаратов (29×19-24×16 мм);
  • APS-C – применяются в моделях изделий потребительского класса (23×15-18×12 мм).

Полнокадровые матрицы больше размерами, чем усеченные. Ими оснащают профессиональные модели фотокамер.

Системы стабилизации изображения

Из-за перемещения фотокамеры при фотосъемке или из-за дрожания рук получаются смазанные кадры. С данным явлением борется стабилизатор изображения (имеется не во всех моделях). Он бывает трех видов:

  • оптическим;
  • с подвижной матрицей;
  • электронным (цифровым).

Первый представляет собой вмонтированный в объектив блок линз, который управляется специальными сенсорами. Системы с подвижной матрицей (например, «Anti-shake») предполагают ее фиксацию на двигающейся платформе. Они считаются менее эффективными, чем оптическая стабилизация.

Электронный vr (подавитель вибраций) предполагает преобразование лишь картинки процессором. Цифровой стабилизатор функционирует с любыми объективами.

Краткая характеристика остальных деталей фототехники

Наличие фотовспышки позволяет подсвечивать объекты, расположенные на переднем плане вблизи от фотографа. Обычно встроенные первоначально такие устройства отличаются небольшой мощностью. По этой причине полупрофессиональные и профессиональные фотографические аппараты оснащают разъемом, позволяющим подключать дополнительные фотовспышки.

Функции фотоаппарата расширяет применение вспышек, способных подавлять эффект красных глаз. Также удобным является наличие нескольких основных их рабочих режимов:

  • автоматического;
  • принудительного;
  • медленной синхронизации;
  • без вспышки.

Чтобы делать автопортреты либо устранить колебания фотоаппарата, используют автоспуск . Это устройство создает задержку времени между нажатием на спуск затвора и его действительным срабатыванием.

На заметку! Во время длительной фотосъемки ряд моделей зеркалок рекомендуется вместо аккумуляторных батарей питать с помощью адаптера, подключаемого через dc in разъем. Это возможно только при наличии доступа к сети напряжением 220 V.

Процессор фотоаппарата выполняет такие функции:

  • управляет вспышкой, интерфейсом камеры, автофокусировкой;
  • рассчитывает экспозицию;
  • обрабатывает данные с матрицы;
  • регулирует резкость, светочувствительность, контраст, баланс белого, шум и ряд других параметров картинки;
  • сохраняет изображение на карте памяти, сжимая файлы;
  • обеспечивает связь с внешними устройствами (например, компьютером).

При обработке цифровых данных процессором они хранятся в оперативной памяти. Для постоянного сохранения информации служат съемные носители в виде карт памяти разных форматов (например, SecureDigital – SD).

Благодаря наличию кнопок управления можно вручную управлять разными настройками, например: регулировать выдержку с диафрагмой, устанавливать светочувствительность матрицы, баланс белого. Это позволяет контролировать весь процесс фотосъемки, создавать требуемые эффекты.

Заключение

Зеркальные фотокамеры позволяют получать высококачественные снимки из-за наличия больших по размеру матриц. Поэтому их используют в своей деятельности профессиональные фотографы и любители, серьезно занимающиеся фотографией. Важнейшим фактором популярности зеркальной фототехники также является сменная оптика, которая делает возможным проводить фотосъемку через телескоп, эндоскоп либо микроскоп.

Сегодня мы не представляем свою жизнь без фотографий. Они окружают нас сплошь и рядом. Сделать фото - элементарная задача для современного человека. Но когда-то об этом могли только мечтать. Давайте узнаем, какой была история фотоаппарата начиная от первых задумок инженеров и заканчивая современными технологиями.

Человека всегда привлекало прекрасное. Однажды он захотел описать его, придать ему форму. В поэзии прекрасное обрело форму слова, в музыке - звука, а в живописи - изображения. Единственное что не смог запечатлеть человек - мгновение. К примеру, поймать раскаты грозы, рассекающие небо, или разбивающуюся каплю. С появлением фотоаппарата это и много другое стало возможным. История развития фотоаппарата включает в себя множество попыток изобретений устройств, регистрирующих изображение. Она начинается давным-давно, когда изучая оптику математики заметили, что изображение можно перевернуть, пропустив его через небольшое отверстие, в темную комнату. Рассмотрим наиболее значимые события, повлиявшие на историю фотоаппарата.

Законы Кеплера

А вы знаете, когда началась история фотоаппарата? Первые технологии, которые позже стали применяться для создания фотографий, появились в 1604 году, когда Йоганн Кеплер - немецкий астроном - установил света в зеркале. Впоследствии на них была основана теория линз, по которым Галилео Галилей - итальянский физик - создал первый в мире телескоп для наблюдения небесных тел. Принцип преломления лучей был установлен и изучен. Осталось научиться регистрировать полученное изображение на бумаге.

Открытие Ньепса

Практически через два столетия, в 20-х годах 19 века, французский изобретатель Жозеф Нисефор Ньепс открыл способ регистрации изображения. Многие считают, что именно с этого момента началась история возникновения фотоаппарата. Суть способа состояла в обработке попадающего света асфальтовым лаком и сохранении его на стеклянной поверхности. Этот лак представлял нечто похожее на современный битум, а стекло называлось камерой-обскурой. С помощью этого метода, изображение приобретало форму и становилось видимым. Это был первый случай в истории, когда картина рисовалась не художником, а преломленными лучами света.

Новое качество снимка от Тальбота

Изучая камеру-обскуру Ньепса, английский физик Уильям Тальбот добился улучшения качества изображения с помощью негатива - изобретенного им отпечатка фотографии. Произошло это в 1835 году. Данное открытие позволило не только делать фото нового качества, но и копировать их. На своем первом фото Тальбот запечатлел окно своего дома. Изображение четко передает очертание окна и рамы. В своем докладе, написанном немного позже, Тальбот назвал фотографию миром прекрасного. Именно он заложил основу принципа, который использовался для печати фотографий еще долгие годы.

Изобретение Сэттона

В 1861 году английский фотограф Т. Сэттон разработал фотоаппарат, у которого был единый зеркальный объектив. Фотоаппарат состоял из штатива и крупного ящика, на верхней стороне которого была специальная крышка. Уникальность крышки заключалась в том, что она не пропускала свет, но через нее можно было смотреть. Объектив регистрировал фокус на стекле, которое с помощью зеркал формировало изображение. По большому счету, это был первый фотоаппарат. История дальнейшего развития фотографии развивалась более динамично.

«Кодак»

Популярный нынче бренд «Кодак» впервые заявил о себе в 1889 году, когда Джордж Истман запатентовал первую рулонную фотопленку, а затем и фотокамеру, сконструированную специально под эту пленку. В результате появилась крупная корпорация «Кодак». Интересно отметить, что название «Кодак» не несет какой-либо смысловой нагрузки. Истман просто хотел придумать слово, которое начиналось бы и заканчивалось на одну и ту же букву.

Пластины для фото

В 1904 году торговая марка Lumiere наладила выпуск пластин для цветных фотографий. Они стали прообразом современного снимка.

Фотоаппараты Leica

В 1923 году появился фотоаппарат, который работал с 35-миллиметровой пленкой. Появилась возможность просматривать негативы и выбирать для печати лучшие из них. Спустя два года в массовое производство запустились фотоаппараты Leica. В 1935 году появилась модель Leica 2, которая оснащалась видоискателем, мощной фокусировкой, и могла совмещать две картинки в одну. А версия Leica 3 также позволяла регулировать длительность выдержки. Долгое время модели Leica были неотъемлемым атрибутом в фотографическом искусстве.

Цветные пленки

В 1935 году компания Kodak начала выпускать цветную пленку «Кодакхром». После печати такую пленку нужно было отдавать на доработку, во время которой и накладывались цветные компоненты. Через семь лет проблема была решена. В результате пленка «Кодакколор» на ближайшие полвека стала одной из наиболее часто применяемых в профессиональной и любительской фотосъемке.

Фотокамера «Полароид»

В 1963 году история фотоаппарата получила новый вектор. Фотокамера «Полароид» перевернула представление о быстрой печати фото. Камера позволяла печатать фото сразу после того, как оно было сделано. Нужно было лишь нажать на кнопку и подождать пару минут. За это время фотоаппарат прорисовывал на чистом отпечатке контуры картинки, а затем полную гамму цветов. На ближайшие 30 лет, фотоаппараты «Полароид» обеспечили себе первенство на рынке. Спад популярности этих моделей начался лишь в годы, когда зарождалась эпоха цифрового фото.

В 70-х фотоаппараты начали снабжать экспонометром, автоматической фокусировкой, встроенной вспышкой и автоматическими режимами съемки. В 80-х некоторые модели уже оборудовались жидкокристаллическими дисплеями, на которые выводились настройки и режимы аппарата. История цифрового фотоаппарата начиналась примерно тогда же.

Эпоха цифрового фото

В 1974 году, благодаря электронному астрономическому телескопу, удалось сделать первое цифровое фото звездного неба. А в 1980-м компания Sony запустила выпуск цифровой фотокамеры Mavica. Видео, снятое на нее, записывалось на гибкий флоппи-диск. Его можно было бесконечно очищать для новой записи. В 1988 году вышла первая модель цифрового аппарата от компании Fujifilm. Аппарат получил название Fuji DS1P. Фотографии, сделанные на него, сохранялись в цифровом виде на электронный носитель.

В 1991 году фирма Kodak создала цифровую зеркальную камеру, которая имела 1,3 мегапикселя разрешения и ряд функций, позволяющий делать с нее профессиональные цифровые снимки. А фирма Canon в 1994 году снабдила свои фотоаппараты системой оптической стабилизации изображения. Вслед за Canon от пленочных моделей отказалась и фирма Kodak. Произошло это в 1995 году. Дальнейшая история фотоаппарата развивалась еще динамичнее, хотя принципиально важных разработок больше не было. А вот что было, так это уменьшение габаритов и стоимости при увеличении функциональности. Именно от удачного сочетания этих характеристик и зависит сегодня успешность компании на рынке.

2000-е

Корпорации Samsung и Sony, которые развиваются на базе цифровых технологий, поглотили львиную долю рынка цифровых фотоаппаратов. Любительские модели преодолели границу в 3 мегапикселя разрешения и стали соперничать с профессиональной техникой по Несмотря на стремительное развитие цифровых технологий - распознавание лица и улыбки в кадре, устранение эффекта «красных» глаз, многократное зумирование и прочие функции, - цена на фототехнику стремительно падает. Телефоны, снабженные камерой и цифровым зумом, начали противостоять фотоаппаратам. Пленочные аппараты уже мало кого интересуют, а аналоговые фотографии начали цениться как раритет.

Как устроен фотоаппарат?

Теперь мы с вами знаем, из каких этапов состояла история фотоаппарата. Кратко рассмотрев ее, познакомимся с устройством фотоаппарата поближе.

Пленочный фотоаппарат работает следующим образом: проходя через диафрагму объектива, свет вступает в реакцию с пленкой, покрытой химическими элементами, и сохраняется на ней. Корпус не пропускает свет, равно как и крышка пленкодержателя. В фильмовом канале, пленка перематывается после каждого снимка. Объектив состоит из нескольких линз, которые позволяют менять фокусировку. В профессиональном объективе, кроме линз, устанавливаются также зеркала. Яркость оптического изображения регулируется с помощью диафрагмы. С помощью затвора приоткрывается шторка, закрывающая пленку. От того, насколько долго затвор находится в открытом положении, зависит экспозиция фотографии. В случае если объект недостаточно освещен, применяется вспышка. Она состоит из газоразрядной лампы, при мгновенном разряжении которой можно получить свет, превышающий по яркости свет тысячи свечей.

Цифровой фотоаппарат на стадии прохождения света через объектив работает также как и пленочный. Но после того как изображение преломляется через оптическую систему, оно преобразуется в цифровую информацию на матрице. От разрешения матрицы зависит качество снимка. После нее перекодированная картинка сохраняется в цифровом виде на носителе информации. Корпус такого фотоаппарата аналогичен пленочному, но в нем отсутствует фильмовой канал и место под катушку с пленкой. В этой связи габариты цифрового фотоаппарата гораздо меньше. Привычным атрибутом для современных цифровых моделей является ЖК-дисплей. Он, с одной стороны, служит видоискателем, а с другой - позволяет осуществлять удобную навигацию по меню и видеть результат фокусировки.

Объектив цифрового аппарата также состоит из линз или зеркал. В любительских камерах он может быть небольшим, но функциональным. Главным элементом цифрового фотоаппарата является матрица-сенсор. Она представляет собой небольшую пластинку с проводниками, которая формирует качество картинки. За все функции цифровой камеры отвечает микропроцессор.

Заключение

Сегодня мы узнали, из каких этапов состояла увлекательная история фотоаппарата. Фотографии сегодня никого не удивляют, но были времена, когда они считались настоящим чудом инженерной мысли. Сейчас фото делается за считанные секунды, а раньше на это уходил дни.

История создания фотоаппарата с появлением цифровых камер получила новую веху развития. Если раньше фотограф вынужден был идти на всякие ухищрения чтобы получился красивый снимок, то теперь за это отвечает богатое на функции программное обеспечение фотоаппарата. Кроме того, любое цифровое фото можно дополнительно отредактировать на компьютере. Создатели первых фотоаппаратов о таком даже не мечтали.

Устройство большинства зеркальных цифровых фотоаппаратов – это фотокамера, в которой объектив для захвата изображений и объектив видоискателя один и тот же, в фотоаппарате также используется и цифровая матрица, необходимая для записи изображений. В фотоаппаратах незеркального типа изображение попадает в видоискатель посредством маленького отдельного объектива, который чаще всего располагается над основным. Также имеется отличие и от обыкновенного устройства фотоаппарата (так называемой мыльницы), где на экране отображается изображение, которое непосредственно попадает на матрицу.

Устройство фотоаппарата и его принцип действия обычно таковы, что свет проходит сквозь объектив. После этого он попадает на диафрагму, за счет которой регулируется его количество, после чего свет, в устройстве зеркального цифрового фотоаппарата, доходит до зеркала, отражается от него, проходит сквозь призму, чтобы его перенаправить в видоискатель. Посредством информационного экрана к изображению добавляется дополнительная информация об экспозиции и кадре (это зависит уже от модели конкретного аппарата).

В тот момент, когда осуществляется фотографирование, зеркало конструкции фотоаппарата поднимается, затвор фотоаппарата открывается. В этот момент прямо на матрицу фотокамеры попадает свет и осуществляется фотографирование или, если говорить более научными терминами, - экспонирование кадра. После этого затвор закрывается, зеркало опускается обратно, и можно делать следующий снимок. Следует понимать, что внутри фотокамеры весь этот, казалось бы, сложный по описанию процесс занимает всего лишь доли секунды.

С момента создания первого устройства фотосъемки, практически не было внесено никаких изменений в основную схему его работы. Через отверстие проходит свет, масштабируется, и поступает на светочувствительный элемент, установленный внутри камеры. Данный принцип одинаков, как для цифровых зеркальных агрегатов, так и для пленочных камер.

Так в чем же состоят различия в конструкции цифрового зеркального фотоаппарата и в чем заключаются его преимущества?

Зеркальный фотоаппарат, по большому счету, отличается от не зеркальных тем, что в последних отсутствует специальное зеркало. Данное зеркальце дает возможность фотографу видеть в видоискателе совершенно такую же картинку, которая попадает на матрицу или пленку.

В чем заключаются отличия между цифровым зеркальным фотоаппаратом и зеркальным пленочным фотоаппаратом?

1. Первое отличие здесь совершенно очевидно: в зеркальной цифровой фотокамере для записи на карту памяти изображения применяется электроника, в то время, как устройство фотоаппарата пленочного зеркального типа осуществляет захват изображения на пленку.

2. Вторая отличительная черта состоит в том, что подавляющее большинство зеркальных цифровых фотоаппаратов осуществляют запись изображений на поверхность матрицы, площадь которой меньше, нежели кадр в пленочных зеркальных камерах.

3. Устройство цифровых фотоаппаратов позволяет фотографам просматривать полученные изображения сразу же после осуществления съемки.

4. Для более старых моделей пленочных аппаратов не нужно электрическое питание. Они целиком состоят из механики. А вот зеркальным цифровым фотокамерам для работы необходимы аккумуляторы либо сменные батарейки.

5. При работе с пленкой, кадр лучше будет немного переэкспонировать, а, в случае с цифровыми фотокамерами, наоборот, - немного недоэкспонировать кадр.

6. В независимости от того, какой используется фотоаппарат – пленочный или цифровой, оба типа агрегатов обладают огромными возможностями по смене пультов дистанционного управления, объективов, элементов питания, вспышек и ряда других аксессуаров.

Из чего состоит современный фотоаппарат?

Для начала, рассмотрим в общих чертах устройство современной фотокамеры. Думаю всем уже известно, что любой фотоаппарат конструктивно представляет собою камеру-обскуру – темная коробка, в одной из стенок которой имеется отверстие. На противоположной стенке от данного отверстия установлена матрица – светочувствительный сенсор. Для облегчения процесса создания фотоснимков, а также повышения оптических характеристик аппарата, современные камеры-обскуры оборудуются также дополнительными компонентами.

Основными частями современных фотоаппаратов являются:
1. Объектив – представляет собой набор плит, посредством которых осуществляется преломление световых лучей на пленку (или матрицу), что придает изображению четкость;

2. Затвор – устанавливается между матрицей и объективом, представляет собою непрозрачную плоскость, которая может закрываться и открываться с большой скоростью, регулируя, тем самым, время засветки матрицы (так называемая «выдержка»);

3. Диафрагма – круглое изменяемое отверстие, обычно устроенное внутри объектива, за счет которого определяется количество поступающего на матрицу фотоаппарата света.

Теперь, когда ознакомились в общих чертах, рассмотрим более подробно устройство фотоаппарата, а также принцип работы и назначение каждого из указанных выше конструктивных частей фотокамеры.

Объектив

Это самая важная часть любого аппарата, поэтому необходимо уделить ему особенное внимание.

Объектив – это оптическое устройство, за счет которого осуществляется проецирование изображения на плоскости. Объектив состоит обычно из набора линз, которые собраны внутри оправы в единую систему.

Объективы хорошего качества должны давать на пленке геометрически правильное, резкое изображение объектов фотосъемки по всему полю кадра, для которого он предназначается. Производство объективов требует очень высокой точности, и на заводе осуществляется проверка качества каждого выпускаемого объектива. Современные объективы – это очень сложная система оптических линз. Обычная собирательная линза может также быть использована в качестве объектива (таким образом, и поступали первые фотографы), но, ввиду свойственного ей большого числа недостатков, фотоснимок получается резким лишь в небольшой центральной части и размытым, абсолютно нерезким по краям, прямые же линии на краях изображения, при этом, получаются изогнутыми. Комбинирование линз дает возможность избавиться от большей части перечисленных нами недостатков и неточностей.

Выбираем первый объектив для своего фотоаппарата

Когда вы планируете и выбираете зеркальный фотоаппарат, который в дальнейшем хотите приобрести, сразу же рекомендую подумать и об объективе. Одна и та же модель фотокамеры продаваться может как без объектива как такового, так и может быть укомплектована каким-нибудь приспособлением (на выбор производителя). Как правило, комплект фотокамеры с объективом обойдется менее дорого, нежели приобретение по отдельности этих же компонентов. Но может выйти и такая ситуация, что предлагаемый производителем объектив вас не устроит по каким-нибудь характеристикам.

Свой первый объектив необходимо выбирать из соображений его универсальности. В идеале – это должен быть объектив, который можно будет использовать для всех случаев. И от того, насколько широки будут его возможности, зависит, насколько быстро вы поймете, в каком жанре чаще всего вы снимаете, и какой специализированный объектив необходимо будет приобрести в дальнейшем. Большинство объективов выпускаются со стандартной резьбой, и устройство фотоаппарата позволяет без затруднений осуществлять замену объективов.

Даже тогда, когда вы уже приобретете отдельные объективы для каждого особого случая (портретник, макрик, телевик или ширик), то, вероятнее всего, в 99 процентах случаев вы все равно будете продолжать фотографировать универсальным объективом. Специализированные объективы бывают необходимы довольно-таки редко, но когда такой момент настает, они отрабатывают, как говорится, на все 100, и никакой универсальный объектив заменить их неспособен.

Можно, таким образом, подвести итог, что имеет смысл отнестись очень серьезно и тщательно к выбору первого объектива, чтобы он, после приобретения следующего, не оказался навсегда лежать в длинном ящике. Это особенно актуально для людей, которые много путешествуют, и им приходится снимать множество абсолютно разных сцен. Ведь в дорогу, вы согласитесь, неудобно брать лишний вес. Тем более, если его вполне можно заменить.

Диафрагма

Если вы заглянете внутрь объектива, то сможете увидеть там несколько лепестков в форме дуги. Это и есть диафрагма.

Термин «диафрагма» имеет греческое происхождение, и означает буквально «перегородка». Другое его название, уже от английского, - «апертура» - устройство, которое позволяет регулировать светосилу объектива, изменять действующее отверстие, соотношение яркости оптического изображения объекта фотосъемки к яркости собственно самого объекта.

При помощи специального привода можно свести к центру лепестки диафрагмы, за счет чего его действующее отверстие будет уменьшено. По мере уменьшения действующего отверстия диафрагмы, происходит уменьшение светосилы объектива, а также увеличивается выдержка во время съемки.

При изменении значения на одну ступень, происходит изменение диаметра отверстия диафрагмы в порядка 1,4 раз, а количество же света, который попадает на матрицу, изменяется в два раза.

Так каково же основное назначение диафрагмы и зачем данное приспособление вообще включено в устройство фотоаппарата? С одной стороны, с уменьшением рабочего (действующего) отверстия объектива, происходит ослабление светосилы. Данное свойство может нам пригодиться во время съемки объектов слишком большой яркости, к примеру, снежной поляны в ясный день либо залитого солнцем пляжа.

Скорее всего каждый человек, который читал статьи, касаемо устройства современных и не только фотокамер, задавал себе вопрос – а почему в схемах коробка указана с чувствительным элементом, объектив с линзами, и даже затвор удостоился места в данных описаниях, а про диафрагму же не сказано ничего. А все очень просто: фотокамера способна делать снимки и без помощи диафрагмы. Вот оно как получается! Заинтригованы?

Если говорить простыми словами, диафрагма – это перегородка. Как я говорил ранее, она является экспопарой вместе с выдержкой: диафрагма может быть открыта, а выдержка сделана более краткой, а можно и наоборот – отверстие диафрагмы сделать меньшим размером и увеличить продолжительность выдержки. Экспопара, на первый взгляд, является взаимозаменяемой – как диафрагма, так и выдержка оказывает определенное влияние на количество света, пропускаемого на светочувствительный элемент фотокамеры, но это лишь на первый взгляд. На что диафрагма оказывает влияние в первую очередь, так это на глубину резко изображаемого пространства (далее ГРИП), или, говоря более простым языком, - на глубину резкости. Именно по этой причине для фотографа диафрагма является очень функциональным рычагом, способствующим достижению требуемого творческого эффекта.

Я не буду мучить вас различными заумными определениями типа «диафрагма является прямопропорциональной квадрату корня такого-то значения…» так как на практике это все не запомнится все равно. Главное, что нужно знать, так это то, что диафрагма обозначается как f, и чем большим будет ее цифровое значение, тем меньшим будет относительное отверстие и в обратном направлении. К примеру, если мы, на объективе с относительным отверстием в 2.8, выставим значение f диафрагмы 2,8, то это и будет означать, что на данном объективе будет полностью открыта перегородка. И это является как раз тем случаем, когда в процессе фотосъемки диафрагма участия не принимает. Свадебные фотографы, да и не только они, очень часто осуществляют съемку на полностью открытой диафрагме. А вообще, принято считать, что чем значение диафрагмы будет меньше, тем более интересно будет вырисован объект.
Конструкция перегородки дает возможность изменения рабочего отверстия объектива.

Но есть также и еще одна практическая характеристика диафрагмы, которая зачастую применяется в процессе художественной фотосъемки. Чем меньше будет установлено значение отверстия диафрагмы, тем большая будет получена глубина резко изображаемого пространства, либо, как еще принято говорить в среде фотографов, глубина резкости, то есть область четкой фокусировки по отношению к объекту фотосъемки. Значение ГРИП напрямую зависит от фокусного расстояния, диафрагмы, размера матрицы, а также от расстояния до объекта. Наиболее эффективным способом управления ГРИП является регулировка диафрагмы.

Устройство фотоаппарата таково, что при работе с различными сюжетами фотосъемки, требуется разная ГРИП.

Теперь поговорим о наиболее главном. Давайте разберемся более тщательно с тем, что нам может дать уменьшение или увеличение размеров отверстия диафрагмы. Чем меньше будет установлено отверстие диафрагмы, тем большей будет глубина ГРИП, или, если кратко, - глубина резкости, область фокусировки вокруг объекта фотосъемки.

К примеру, фотографы, во время съемки пейзажей, закрывают диафрагму максимально возможно, для получения резкого изображения, как удаленных деталей, так и собственно ближнего плана. И наоборот: при портретной съемке используют традиционно малую ГРИП, для отделения человеческого лица от фона фотографии.

Таким образом, одним из важнейших инструментов фотомастера является возможность регулировки глубины резкости при помощи диафрагмы.

В цифровых фотоаппаратах компактного размера, ввиду малого размера матрицы, ГРИП будет велика при любом положении диафрагмы. Данное обстоятельство может помешать реализации определенных творческих идей. Наиболее эффективным методом регулирования ГРИП, как уже было неоднократно сказано, является регулировка положения диафрагмы, точнее – размера ее отверстия.

При открытой диафрагме будет получен эффект размытия заднего фона. Это можете видеть на нашем примере с цветком. Резкость наведена на ближние края цветка. А задняя же часть кадра красиво размыта, что дает зрителю возможность сразу понять творческий замысел фотографа, сделавшего данный снимок.

Низкое значение ГРИП

Данный прием широко используется в портретной фотосъемке, когда профессиональные фотографы делают акцент на лице портретируемого человека, а задняя же часть кадра (фон) должна быть размыта.

За счет низкого ГРИП можно сразу же понять, на что обращает внимание фотограф.

Хотелось бы отметить еще один очень важный момент. Низкая глубина при резко изображаемом пространстве действует не только лишь на расстояние от объекта фотосъемки вдаль, а и в ширину. Данный факт необходимо также принять во внимание и при выборе требуемой диафрагмы. Рассмотрим все это на конкретном примере. Предположим, что вам нужно сделать снимок широкого объекта, либо же группу людей, которые стоят друг к другу плечом, со сравнительно небольшого расстояния. В том случае, если вы решите вдруг сделать снимок с максимально размытым фотом и откроете диафрагму полностью, можете быть готовы к тому, что люди, которые стоят ближе всего к краям кадра, получатся на фото расфокусированы. Из этого можно прийти к выводу, что глубина резкости распространяется по всем сторонам от фокусной точки, которая расположена на оптической оси объектива вашего фотоаппарата.

Затвор

Следующий элемент, входящий в устройство фотоаппарата, - это затвор.

Затвор отмеряет период времени, на протяжение которого на матрицу фотоаппарата воздействует свет. Затвор фотокамеры – это невидимый, но очень важный элемент системы фотоаппарата. Непрофессиональному фотографу затвор фотокамеры не виден, но зато всегда слышен.

Что представляет собой затвор? Для чего он вообще нужен?

Данный конструктивный элемент фотосистемы выполняет одну из главнейших функций захвата изображения на цифровую матрицу или пленку. Основная задача затвора состоит в регулировании прохождения через оптическую систему аппарата на светочувствительный элемент фотокамеры светового потока.

Если вам когда-нибудь приходилось слышать о времени захвата изображений фотокамерой – «выдержке» - то затвор фотоаппарата – это основное устройство, с помощью которого данное время можно контролировать.

Что происходит с затвором в момент фотосъемки?

Затвор фотокамеры представляет собою механическое устройство, которое в большинстве случаев представлено в виде шторки (горизонтальные либо вертикальные). Необходимо понимать тот факт, что существует минимальный период времени, в течении которого данные шторки успеют закрыться и открыться, что позволит световому потоку проэкспонировать кадр, пройдя на матрицу или фотопленку.

Так каким же образом осуществляется работа затвора фотокамеры в тех случаях, когда выдержки становятся, как говорится, сверхкороткими (значение 1/5000 либо 1/7000). На такие случаи в конструкции цифрового фотоаппарата предусмотрен цифровой затвор, регулирование которого осуществляется матрицей и электроникой. Физический затвор фотокамеры на сверхкоротких выдержках успевает закрываться и открываться на своей максимально возможной скорости, в момент чего на матрицу аппарата поступает цифровой сигнал, свидетельствующий о начале захвата изображение, и спустя доли секунды – другой сигнал, уже о прекращении реагирования на свет.

Вы можете спросить: а зачем вообще тогда нужны в фотоаппарате эти шторки, то есть затвор? Так вот, в современных моделях цифровых фотоаппаратов, в большей части случаев, затвор осуществляет функции защиты матрицы камеры от попадания на нее грязи и пыли, что может нанести ей непоправимые повреждения. А матрица является наиболее дорогостоящим элементом всей цифровой фотокамеры. Время, на протяжении которого затвор фотоаппарата, для получения кадра, будет оставаться открытым, принято называть выдержкой. Выдержка связана с общей освещенности снимаемой сцены и со светосилой объектива. Чем меньше светосила объектива и чем темнее объект фотосъемки, тем дольше необходимо сделать выдержку, для получения правильного экспонирования кадра.

Устройство фотоаппаратов, как пленочных, так и современных зеркальных, предусматривает обязательное наличие затвора – механического устройства, в виде двух непрозрачных шторок, которые закрывают матрицу (сенсор). Из-за наличия этих шторок в цифровых зеркальных фотоаппаратах невозможна наводка (визирование) по дисплею – матрица ведь закрыта, и изображение на дисплей передаваться попросту не может. Когда нажимается кнопка спуска, шторки за счет электромагнитов или пружин приводятся в движение, для света открывается доступ, и на сенсоре осуществляется формирование изображения. В цифровых фотокамерах, на которых установлена несъемная оптика, как правило, стоит электронный затвор, то есть матрица, на время экспонирования, попросту включается в режим записи, а в течении же всего остального времени на дисплей выводится сигнал для наводки на объект. Среди преимуществ электронного затвора можно выделить возможность выполнения съемки на сверхкоротких выдержках, которые, в силу инерции, невозможно осуществить в случае с механическим затвором.

В некоторые модели цифровых фотоаппаратов устанавливается затвор комбинированного типа, который при сверхкоротких выдержках работает как электронное устройство, а на более же длинных к процессу подключается механика. В зеркальных фотокамерах современного образце некоторых производителей возможно также визирование по электронному дисплею аппарата. Подобное устройство зеркальных фотокамер позволяет постепенно избавляться им от своих недостатков, без утери характерных для них достоинств.

А как же вспышка?

Чуть было не упустил еще один фактор, который в достаточной мере влияет на экспозицию – это вспышка. Здесь мы рассмотрим в общих чертах только штатную, то есть бортовую «лягушку». Хотя, прошу прощения. На мыльницах это же совсем не «лягушка», ведь она не выпрыгивает. Данная вспышка обладает рядом режимов, которые, в принципе, зависят от режима самого фотоаппарата. Полный список «услуг» вспышка, как правило, может предоставить лишь в тех случаях, когда камера установлена в режиме «AUTO».

Итак, какие же различают режимы.

1. Автоматический . Вспышка автоматически будет срабатывать (или не срабатывать) по мере необходимости. При этом, регулируется длительность светового импульса, в зависимости от имеющейся освещенности. Удобно это тем, что экономит заряд аккумулятора, но не всегда может быть использовано, таково уж устройство фотоаппарата. К примеру – съемка против света.

2. Принудительная вспышка . Будет срабатывать всегда, в независимости от уровня освещенности. Не доступна регулировка длительности импульса, то есть вспышка полностью использует свое ведущее число. Может быть использована в большинстве случаев фотосъемки, но расход энергии более высокий, чем при предыдущем режиме.

3. Медленная синхронизация . Скорость затвора будет установлена, при этом, на более продолжительном значении. При использовании вспышки, стандартная скорость затвора составляет 1/90 с, то есть «90». Это делается для того, чтобы была возможность проработки фона, так как вспышка обычно до него «не добивает».

Для всех указанных выше режимов доступен режим уменьшения «эффекта красных глаз». В данном случае перед основной вспышкой срабатывает серия коротких вспышек без использования затвора. Это делается для того, чтобы у находящихся в темноте людей сузились зрачки, и глазное дно не отражало красный свет. Рационально будет использовать только во время съемки людей, а во всех остальных же случаях – это просто трата времени перед срабатыванием затвора и энергии.

4. Без вспышки . При этом режиме вспышка срабатывать не будет. Это делается для того, чтобы не осуществлялась съемка с автоматической вспышкой там, где это не нужно или запрещено, а также для получения некоторых эффектов, где необходим естественный свет. Изображение становится, при этом, более естественным. В продвинутых аппаратах также «открывает» ряд некоторых возможностей, к примеру, расширяется «перечень» значений в выборе установки баланса белого.

Следует помнить, что использование штатной вспышки будет делать отображение лиц людей и предметов на снимках плоскими. По крайней мере, необходимо стараться сделать снимок под некоторым углом, чтобы появились тени. Но и переусердствовать не нужно, так как при слишком больших углах будет появляться слишком большой контраст.

На этом данную тему спешу завершить, а то и так уже достаточно объемной получилась. Если что-то упустил, рассмотрю в следующих постах.

СКОПИРОВАНО С ПРОСТОРОВ ИНТЕРНЕТА (ИЗ ЛУЧШИХ ЕГО МЕСТ)