Космическая инфляция. В.Казютинский

Сразу после зарождения Вселенная расширялась невероятно быстро.

С 30-х годов XX века астрофизики уже знали, что, согласно закону Хаббла , Вселенная расширяется, а значит, она имела свое начало в определенный момент в прошлом. Задача астрофизиков, таким образом, внешне выглядела простой: отследить все стадии хаббловского расширения в обратной хронологии, применяя на каждой стадии соответствующие физические законы, и, пройдя этот путь до конца — точнее, до самого начала, — понять, как именно всё происходило.

В конце 1970-х годов, однако, оставались нерешенными несколько фундаментальных проблем, связанных с ранней Вселенной, а именно:

  • Проблема антивещества . Согласно законам физики, вещество и антивещество имеют равное право на существование во Вселенной (см. Античастицы), однако Вселенная практически полностью состоит из вещества. Почему так произошло?
  • Проблема горизонта. По фоновому космическому излучению (см. Большой взрыв) мы можем определить, что температура Вселенной везде примерно одинакова, однако отдельные ее части (скопления галактик) не могли находиться в контакте (как принято говорить, они были за пределами горизонта друг друга). Как же получилось, что между ними установилось тепловое равновесие?
  • Проблема распрямления пространства. Вселенная, судя по всему, обладает именно той массой и энергией, которые необходимы для того, чтобы замедлить и остановить хаббловское расширение. Почему из всех возможных масс Вселенная имеет именно такую?

Ключом к решению этих проблем послужила идея, что сразу после своего рождения Вселенная была очень плотной и очень горячей. Всё вещество в ней представляло собой раскаленную массу кварков и лептонов (см. Стандартная модель), у которых не было никакой возможности объединиться в атомы. Действующим в современной Вселенной различным силам (таким, как электромагнитные и гравитационные силы) тогда соответствовало единое поле силового взаимодействия (см. Универсальные теории). Но когда Вселенная расширилась и остыла, гипотетическое единое поле распалось на несколько сил (см. Ранняя Вселенная).

В 1981 году американский физик Алан Гут осознал, что выделение сильных взаимодействий из единого поля, случившееся примерно через 10 -35 секунды после рождения Вселенной (только задумайтесь — это 34 нуля и единица после запятой!), стало поворотным моментом в ее развитии. Произошел фазовый переход вещества из одного состояния в другое в масштабах Вселенной — явление, подобное превращению воды в лед. И как при замерзании воды ее беспорядочно движущиеся молекулы вдруг «схватываются» и образуют строгую кристаллическую структуру, так под влиянием выделившихся сильных взаимодействий произошла мгновенная перестройка, своеобразная «кристаллизация» вещества во Вселенной.

Кто видел, как лопаются водопроводные трубы или трубки автомобильного радиатора на сильном морозе, стоит только воде в них превратиться в лед, тот на собственном опыте знает, что вода при замерзании расширяется. Алану Гуту удалось показать, что при разделении сильных и слабых взаимодействий во Вселенной произошло нечто подобное — скачкообразное расширение. Это расширение, которое называется инфляционным , во много раз быстрее обычного хаббловского расширения. Примерно за 10 -32 секунды Вселенная расширилась на 50 порядков — была меньше протона, а стала размером с грейпфрут (для сравнения: вода при замерзании расширяется всего на 10%). И это стремительное инфляционное расширение Вселенной снимает две из трех вышеназванных проблем, непосредственно объясняя их.

Решение проблемы распрямления пространства нагляднее всего демонстрирует следующий пример: представьте координатную сетку, нарисованную на тонкой эластичной карте, которую затем смяли как попало. Если теперь взять и сильно встряхнуть эту смятую в комок эластичную карту, она снова примет плоский вид, а координатные линии на ней восстановятся, независимо от того, насколько сильно мы деформировали ее, когда скомкали. Аналогичным образом, не важно, насколько искривленным было пространство Вселенной на момент начала ее инфляционного расширения, главное — по завершении этого расширения пространство оказалось полностью распрямленным. А поскольку из теории относительности мы знаем, что кривизна пространства зависит от количества материи и энергии в нем, становится понятно, почему во Вселенной находится ровно столько материи, сколько необходимо, чтобы уравновесить хаббловское расширение.

Объясняет инфляционная модель и проблему горизонта , хотя не так прямо. Из теории излучения черного тела мы знаем, что излучение, испускаемое телом, зависит от его температуры. Таким образом, по спектрам излучения удаленных участков Вселенной мы можем определить их температуру. Такие измерения дали ошеломляющие результаты: оказалось, что в любой наблюдаемой точке Вселенной температура (с погрешностью измерения до четырех знаков после запятой) одна и та же. Если исходить из модели обычного хаббловского расширения, то вещество сразу же после Большого взрыва должно было разлететься слишком далеко, чтобы температуры могли уравняться. Согласно же инфляционной модели, вещество Вселенной до момента t = 10 -35 секунды оставалось гораздо более компактным, чем при хаббловском расширении. Этого чрезвычайно краткого периода было вполне достаточно, чтобы установилось термическое равновесие, которое не было нарушено на стадии инфляционного расширения и сохранилось до сих пор.

Американский физик, специалист в области элементарных частиц и космологии. Родился в Нью-Брюнсвике, штат Нью-Джерси. Докторскую степень получил в Массачусетском технологическом институте, куда в 1986 году и вернулся, став профессором физики. Свою теорию инфляционного расширения Вселенной Гут разработал еще в Стэнфордском университете, занимаясь теорией элементарных частиц . Известен его отзыв о Вселенной как о «бескрайней скатерти-самобранке».

Инфляционная модель Вселенной – научная космологическая теория о законе и состоянии расширения Вселенной на раннем этапе Большого взрыва. В отличие от стандартной модели горячей Вселенной, данная теория предполагает ускоренный период расширения Вселенной на раннем этапе при температуре выше 10 28 Кельвинов.

Инфляционная модель Вселенной была разработана относительно недавно. Еще в 30-х годах 20 века ученые знали, что наша Вселенная непрестанно расширяется. Важную роль в этом сыграло открытие , который указывал на данный факт. Ученые поняли, что процессу расширения Вселенной предшествовало свое начало. По этой причине они решили, применяя физико-математические законы, теоретически воссоздать процесс формирования Вселенной и понять, что именно послужило толчком к ее расширению.

Создавая теорию формирования Вселенной, ученые столкнулись с рядом вопросом, например: почему во Вселенной так мало антивещества, если оно должно состоять с веществом в примерно равных пропорциях; как получилось, что температура всех областей Вселенной примерно одинакова, если отдельные ее части никак не могли контактировать друг с другом; почему Вселенная обладает именно такой массой и энергией, которая способна замедлить хаббловское и многое другое. Занимаясь поиском ответов на эти вопросы, ученые вывели стандартную модель горячей Вселенной, которая гласит, что в самом начале своего зарождения Вселенная была очень плотной и горячей, и в ней существовало единое поле взаимодействия между всеми частицами. Впоследствии, когда Вселенная расширилась и остыла, это поле распалось на электромагнитное, гравитационное, сильное и слабое взаимодействие, которое позволили частицам, из которых состояла первобытная Вселенная, объединяться в атомы и другие сложные структуры.

В 1981 году американский ученый Алан Гут понял, что выделение сильных взаимодействий из единого поля, а также фазовый переход первобытного вещества Вселенной из одного состояния в другое произошел примерно через 10 –35 секунды после рождения Вселенной. Этот период можно условно назвать «первоначальной кристаллизацией Вселенной» или «экстренным расширением Вселенной». В чем-то этот процесс напоминает процедуру замерзания воды и превращения ее в лед. Всем известно, что вода при замерзании расширяется. Алану Гут предположил, что на самом начальном этапе формирования Вселенной произошло ее скачкообразное расширение, благодаря которому Вселенная за крохотные доли секунды расширилась в 50 раз. Свою теорию ученый назвал инфляционной моделью Вселенной (инфляция от англ. Inflate – раздувать, накачивать). При помощи этой модели можно объяснить, почему Вселенная обладает такой массой и энергией, которая позволяет замедлить хаббловское расширение, а также, почему температура всех областей нашей Вселенной примерно одинакова.

Проблема крупномасштабной однородности и изотропности Вселенной

Хаббловское расстояние совпадает с наблюдаемой нами Вселенной. Это говорит нам о том, что из-за конечности возраста нашей Вселенной и скорости света можно наблюдать сейчас только те области Вселенной, которые находятся на равном или меньшем расстоянии горизонта наблюдений.

Казалось маловероятным, что эхо событий, происходивших в первые миллисекунды рождения Вселенной, может дойти до нас. Однако это оказалось возможным.

Космология, строение Вселенной, прошлое, настоящее и будущее нашего мира - эти вопросы всегда занимали лучшие умы человечества. Для развития космологии, да и науки в целом, крайне важно понимание Вселенной как единого целого. Особую роль играют экспериментальная проверка абстрактных построений, подтверждение их наблюдательными данными, осмысление и сопоставление результатов исследований, адекватная оценка тех или иных теорий. Сейчас мы находимся на середине пути, который ведет от решения уравнений Эйнштейна к познанию тайны рождения и жизни Вселенной.

Очередной шаг на этом пути сделал создатель теории хаотической инфляции, воспитанник Московского государственного университета, ныне профессор Стэнфордского университета Андрей Дмитриевич Линде, внесший существенный вклад в понимание самой ранней стадии развития Вселенной. Многие годы он проработал в одном из ведущих академических российских институтов - Физическом институте им. Лебедева Академии наук (ФИАН), занимался следствиями современных теорий элементарных частиц, работая вместе с профессором Давидом Абрамовичем Киржницем.

В 1972 г. Киржниц и Линде пришли к выводу, что в ранней Вселенной происходили своеобразные фазовые переходы, когда различия между разными типами взаимодействий вдруг исчезали: сильные и электрослабые взаимодействия сливались в одну единую силу. (Единая теория слабого и электромагнитного взаимодействий, осуществляемых кварками и лептонами посредством обмена безмассовыми фотонами (электромагнитное взаимодействие) и тяжелыми промежуточными векторными бозонами (слабое взаимодействие), создана в конце 1960-х гг. Стивеном Вайнбергом, Шелдоном Глэшоу и Абдусом Саламом.) В дальнейшем Линде сосредоточился на изучении процессов на еще более ранних стадиях развития Вселенной, в первые 10 –30 с после ее рождения. Раньше казалось маловероятным, что до нас может дойти эхо событий, происходивших в первые миллисекунды рождения Вселенной. Однако в последние годы современные методы астрономических наблюдений позволили заглянуть в далекое прошлое.

Проблемы космологии

Рассматривая теорию Большого взрыва, исследователи сталкивались с проблемами, ранее воспринимавшимися как метафизические. Однако вопросы неизменно возникали и требовали ответов.

Что было тогда, когда ничего не было? Если Вселенная родилась из сингулярности, значит, когда-то ее не существовало. В «Теоретической физике» Ландау и Лифшица сказано, что решение уравнений Эйнштейна нельзя продолжить в область отрицательного времени, и потому в рамках общей теории относительности вопрос «Что было до рождения Вселенной?» не имеет смысла. Однако вопрос этот продолжает волновать всех нас.

Пересекаются ли параллельные линии? В школе нам говорили, что нет. Однако когда речь заходит о космологии, ответ не столь однозначен. Например, в замкнутой Вселенной, похожей на поверхность сферы, линии, которые были параллельными на экваторе, пересекаются на северном и южном полюсах. Так прав ли Евклид? Почему Вселенная кажется плоской? Была ли она такой с самого начала? Чтобы ответить на эти вопросы, необходимо установить, что представляла собой Вселенная на самом раннем этапе развития.

Почему Вселенная однородна? На самом деле это не совсем так. Существуют галактики, звезды и иные неоднородности. Если посмотреть на ту часть Вселенной, которая находится в пределах видимости современных телескопов, и проанализировать среднюю плотность распределения вещества в космических масштабах, окажется, что она одинакова во всех направлениях с точностью до 10 –5 . Почему же Вселенная однородна? Почему в разных частях Вселенной действуют одни и те же законы физики? Почему Вселенная такая большая? Откуда взялась энергия нужная для ее возникновения?

Сомнения возникали всегда, и чем больше ученые узнавали о строении и истории существования нашего мира, тем больше вопросов оставалось без ответов. Однако люди старались о них не думать, воспринимая большую однородную Вселенную и непересекающиеся параллельные линии как данность, не подлежащую обсуждению. Последней каплей, заставившей физиков пересмотреть отношение к теории ранней Вселенной, явилась проблема реликтовых монополей.

Существование магнитных монополей было предложено в 1931 г. английским физиком-теоретиком Полем Дираком. Если такие частицы действительно существует, то их магнитный заряд должен быть кратен некоторой заданной величине, которая, в свою очередь, определяется фундаментальной величиной электрического заряда. Почти на полвека эта тема была практически забыта, но в 1975 г. было сделано сенсационное заявление о том, что магнитный монополь обнаружен в космических лучах. Информация не подтвердилась, но сообщение вновь пробудило интерес к проблеме и способствовало разработке новой концепции.

Согласно новому классу теорий элементарных частиц, возникшему в 70-е гг., монополи могли появиться в ранней Вселенной в результате фазовых переходов предсказанных Киржницем и Линде. Масса каждого монополя в миллион миллиардов раз больше массы протона. В 1978–1979 гг. Зельдович, Хлопов и Прескилл обнаружили, что таких монополей рождалось довольно много, так что сейчас на каждый протон приходилось бы по монополю, а значит, Вселенная была бы очень тяжелой и должна была быстро сколлапсировать под своим собственным весом. Тот факт, что мы до сих пор существуем, опровергает такую возможность.

Пересмотр теории ранней Вселенной

Ответ на большую часть перечисленных вопросов удалось получить только после возникновения инфляционной теории.

Инфляционная теория имеет долгую историю. Первую теория такого типа предложил в 1979 году член-корреспондент РАН Алексей Александрович Старобинский. Его теория была довольно сложной. В отличие от последующих работ, она не пытались объяснить, почему Вселенная большая, плоская, однородная, изотропная. Тем не менее, она имела многие важные черты инфляционной космологии.

В 1980 г. сотрудник Массачусетского технологического института Алан Гус (Alan Guth ) в статье «Раздувающаяся Вселенная: возможное решение проблемы горизонта и плоскостности» изложил интересный сценарий раздувающейся Вселенной. Основным его отличием от традиционной теории Большого взрыва стало описание рождения мироздания в период с 10 –35 до 10 –32 с. Гус предположил, что в это время Вселенная была в состоянии так называемого «ложного» вакуума, при котором ее плотность энергии была исключительно велика. Поэтому расширение происходило быстрее, чем по теории Большого взрыва. Эта стадия экспоненциально быстрого расширения и была названа инфляцией (раздуванием) Вселенной. Затем ложный вакуум распадался, и его энергия переходила в энергию обычной материи.

Теория Гуса была основана на теории фазовых переходов в ранней Вселенной развитой Киржницем и Линде. В отличие от Старобинского, Гус ставил своей целью с помощью одного простого принципа объяснить, почему Вселенная большая, плоская, однородная, изотропная, а также почему монополей нет. Стадия инфляции могла бы решить эти проблемы.

К сожалению, после распада ложного вакуума в модели Гуса Вселенная оказывалась либо очень неоднородной, либо пустой. Дело в том, что распад ложного вакуума, как кипение воды в чайнике, происходил за счет образования пузырьков новой фазы. Для того чтобы выделяемая при этом энергия перешла в тепловую энергию Вселенной, необходимо было столкновение стенок огромных пузырей, а это должно было бы приводить к нарушению однородности и изотропности Вселенной после инфляции, что противоречит поставленной задаче.

Несмотря на то, что модель Гуса не работала, она стимулировала разработку новых сценариев раздувающейся Вселенной.

Новая инфляционная теория

В середине 1981 г. Линде предложил первый вариант нового сценария раздувающейся Вселенной, основывающийся на более детальном анализе фазовых переходов в модели Великого объединения. Он пришел к выводу, что в некоторых теориях экспоненциальное расширение не заканчивается сразу после образования пузырьков, так что инфляция может идти не только до фазового перехода с образованием пузырьков, но и после, уже внутри них. В рамках этого сценария наблюдаемая часть Вселенной считается содержащейся внутри одного пузырька.

В новом сценарии Линде показал, что разогрев после раздувания происходит за счет рождения частиц во время колебаний скалярного поля (см. ниже). Таким образом, соударения стенок пузырьков, порождающих неоднородности, стали не нужны, и тем самым была решена проблема крупномасштабной однородности и изотропности Вселенной.

Новый сценарий содержал два ключевых момента: во-первых, свойства физического состояния внутри пузырьков должен меняться медленно, чтобы обеспечивалось раздувание внутри пузырька; во-вторых, на более поздних стадиях должны происходить процессы, обеспечивающие разогрев Вселенной после фазового перехода. Спустя год исследователь пересмотрел свой подход, предложенный в новой инфляционной теории, и пришел к выводу, что фазовые переходы вообще не нужны, равно как переохлаждение и ложный вакуум, с которого начинал Алан Гус. Это был эмоциональный шок, т. к. предстояло отказаться от считавшихся истинными представлений о горячей Вселенной, фазовых переходах и переохлаждении. Необходимо было найти новый способ решения проблемы. Тогда была выдвинута теория хаотической инфляции.

Хаотическая инфляция

Идея, лежащая в основе теории хаотической инфляции Линде, очень проста, но для того чтобы ее объяснить, нужно ввести понятие скалярного поля. Существуют направленные поля - электромагнитное, электрическое, магнитное, гравитационное, но может быть по крайней мере еще одно - скалярное, которое никуда не направлено, а представляет собой просто функцию координат.

Самым близким (хотя и не точным) аналогом скалярного поля является электростатический потенциал. Напряжение в электрических сетях США - 110 В, а в России - 220 В. Если бы человек одной рукой держался за американский провод, а другой - за российский, его бы убила разница потенциалов. Если бы напряжение везде было одинаковым, не было бы разницы потенциалов и ток бы не тек. Так вот в постоянном скалярном поле разницы потенциалов нет. Поэтому мы не можем увидеть постоянное скалярное поле: оно выглядит как вакуум, который в некоторых случаях может обладать большой плотностью энергии.

Считается, что без полей такого типа очень трудно создать реалистичную теорию элементарных частиц. В последние годы были обнаружены практически все частицы, предсказанные теорией электрослабых взаимодействий, кроме скалярной. Поиск таких частиц - одна из основных целей огромного ускорителя, строящегося сейчас в ЦЕРНе, Шейцария.

Скалярное поле присутствовало практически во всех инфляционных сценариях. Гус предложил использовать потенциал с несколькими глубокими минимумами. Новой инфляционной теории Линде требовался потенциал с почти плоской вершиной, но позже, в сценарии хаотической инфляции, оказалось, что достаточно взять обычную параболу, и все срабатывает.

Рассмотрим простейшее скалярное поле, плотность потенциальной энергии которого пропорциональна квадрату его величины, подобно тому как энергия маятника пропорциональна квадрату его отклонения от положения равновесия:

Маленькое поле ничего не будет знать про Вселенную и станет колебаться вблизи своего минимума. Однако если поле будет достаточно велико, то оно будет скатываться вниз очень медленно, разгоняя Вселенную за счет своей энергии. В свою очередь, скорость движения Вселенной (а не какие-либо частицы) будет затормаживать падение скалярного поля.

Таким образом, большое скалярное поле приводит к большой скорости расширения Вселенной. Большая скорость расширения Вселенной мешает полю спадать и тем самым не дает плотности потенциальной энергии уменьшаться. А большая плотность энергии продолжает разгонять Вселенную со все большей скоростью. Этот самоподдерживающийся режим и приводит к инфляции, экспоненциально быстрому раздуванию Вселенной.

Чтобы объяснить этот удивительный эффект, необходимо совместно решить уравнение Эйнштейна для масштабного фактора Вселенной:

и уравнение движения для скалярного поля:

Здесь Н - так называемая постоянная Хаббла, пропорциональная плотности энергии скалярного поля массы m (эта постоянная на самом деле зависит от времени); G - гравитационная постоянная.

Исследователи уже рассматривали, как скалярное поле будет вести себя в окрестностях черной дыры и во время коллапса Вселенной. Но почему-то режим экспоненциального расширения не был найден. А следовало лишь написать полное уравнение для скалярного поля, которое в стандартном варианте (то есть без учета расширения Вселенной) выглядело как уравнение для маятника:

Но вмешался некоторый дополнительный член - сила трения, который был связан с геометрией; его сначала никто не учитывал. Он представляет собой произведение постоянной Хаббла на скорость движения поля:

Когда постоянная Хаббла была большой, трение тоже было велико, и скалярное поле уменьшалось очень медленно. Поэтому и постоянная Хаббла, являющаяся функцией скалярного поля, долгое время почти не менялась. Решение уравнения Эйнштейна с медленно меняющейся постоянной Хаббла описывает экспоненциально быстро расширяющуюся Вселенную.

Эта стадия экспоненциально быстрого расширения Вселенной и называется инфляцией.

Чем отличается этот режим от обычного расширения Вселенной заполненной обычным веществом? Предположим, что Вселенная, заполненная пылью, расширилась в 2 раза. Тогда ее объем вырос в 8 раз. Значит, в 1 см 3 стало в 8 раз меньше пыли. Если решить уравнение Эйнштейна для такой Вселенной, то окажется, что после Большого взрыва плотность вещества быстро падала, а скорость расширения Вселенной быстро уменьшалась.

То же самое было бы и со скалярным полем. Но пока поле оставалось очень большим, оно само себя поддерживало, как барон Мюнхгаузен, вытаскивающий себя из болота за косичку. Это было возможным за счет силы трения, которая была существенна при больших значениях поля. В соответствии с теориями нового типа Вселенная быстро расширялась, а поле почти не менялось; соответственно, не менялась и плотность энергии. Значит, расширение шло экспоненциально.

Постепенно поле уменьшилось, постоянная Хаббла тоже уменьшилась, трение стало маленьким, и поле начало колебаться, порождая элементарные частицы. Эти частицы сталкивались, обменивались энергией и постепенно пришли в состояние термодинамического равновесия. В результате Вселенная стала горячей.

Раньше считалось, что Вселенная была горячей с самого начала. К этому выводу приходили, изучая микроволновое излучение, которое интерпретировали как следствие Большого взрыва и последующего остывания. Затем стали думать, что сначала Вселенная была горячей, потом произошла инфляция, и после нее Вселенная вновь стала горячей. Однако, в теории хаотической инфляции первая горячая стадия оказалась ненужной. Но зачем нам понадобилась стадия инфляции, если в конце этой стадии Вселенная все равно стала горячей, как и в старой теории Большого взрыва?

Экспоненциальное расширение

Есть три простейшие модели Вселенной: плоская, открытая и замкнутая. Плоская Вселенная похожа на поверхность ровного стола; параллельные линии в такой Вселенной всегда остаются параллельными. Открытая Вселенная похожа на поверхность гиперболоида, а замкнутая Вселенная похожа на поверхность шара. Параллельные линии в такой Вселенной пересекаются на ее северном и южном полюсах.

Предположим, что мы живем в замкнутой Вселенной, которая сначала была маленькой как шарик. По теории Большого взрыва, она вырастала до порядочных размеров, но все равно оставалась относительно небольшой. А согласно инфляционной теории, крошечный шарик в результате экспоненциального взрыва за очень короткое время стал огромным. Находясь на нем, наблюдатель увидел бы плоскую поверхность.

Представим себе Гималаи, где существует множество различных уступов, расщелин, пропастей, ложбин, каменных глыб, т. е. неоднородностей. Но вдруг кто-то или что-то совершенно невероятным образом увеличил горы до гигантских размеров, или мы уменьшились, как Алиса в Стране чудес. Тогда, находясь на вершине Эвереста, мы увидим, что она совершенно плоская - ее как бы растянули, и неоднородности перестали иметь какое-либо значение. Горы остались, но для того чтобы подняться хотя бы на один метр, нужно уйти невероятно далеко. Таким образом, может быть решена проблема однородности. Этим же объясняется, почему Вселенная плоская, почему параллельные линии не пересекаются и почему не существуют монополи. Параллельные линии могут пересекаться, и монополи могут существовать, но только так далеко от нас, что мы не можем этого увидеть.

Возникновение галактик

Маленькая Вселенная стала колоссальной, и все стало однородным. Но как же быть с галактиками? Оказалось, что в ходе экспоненциального расширения Вселенной маленькие квантовые флуктуации, существующие всегда, даже в пустом пространстве, из-за квантово-механического принципа неопределенности, растягивались до колоссальных размеров и превращались в галактики. Согласно инфляционной теории, галактики - это результат усиления квантовых флуктуаций, т. е. усиленный и замерзший квантовый шум.

Впервые на эту поразительную возможность указали сотрудники ФИАН Вячеслав Федорович Муханов и Геннадий Васильевич Чибисов в работе, основанной на модели, предложенной в 1979 г. Старобинским. Вскоре после этого, аналогичный механизм был обнаружен в новом инфляционном сценарии и в теории хаотической инфляции.

Небо в крапинку

Квантовые флуктуации приводили не только к рождению галактик, но и к возникновению анизотропии реликтового излучения с температурой примерно 2,7 К, приходящего к нам из дальних областей Вселенной.

Исследовать реликтовое излучение ученым помогают современные искусственные спутники Земли. Самые ценные данные удалось получить с помощью космического зонда WMAP (Wilkinson Microwave Anisotropy Probe ), названного так в честь астрофизика Дэвида Уилкинсона (David Wilkinson ). Разрешающая способность его аппаратуры в 30 раз больше, чем у его предшественника - космического аппарата COBE.

Ранее считалось, что температура неба всюду равна 2,7 К, однако WMAP смог измерить ее с точностью до 10 –5 К с высокой угловой разрешающей способностью. Согласно данным, полученным за первые 3 года наблюдений, небо оказалось неоднородным: где-то горячее, а где-то холоднее. Простейшие модели инфляционной теории предсказали рябь на небе. Но пока телескопы не зафиксировали его пятнистость, наблюдалось только трехградусное излучение, служившее мощнейшим подтверждением теории горячей Вселенной. Теперь же выяснилось, что теории горячей Вселенной не хватает.

Удалось получить фотографии раздутых квантовых флуктуаций, которые появились спустя 10 –30 с после рождения мироздания и сохранились до наших дней. Исследователи не только обнаружили пятнистость неба, но и изучили спектр пятен, т. е. интенсивность сигнала на разных угловых направлениях.

Результаты проведенных с помощью WMAP высокоточных измерений поляризации излучения подтвердили теорию расширения Вселенной и позволили установить, когда произошла ионизация межгалактического газа, вызванная самыми первыми звездами. Полученная со спутника информация подтвердила положение инфляционной теории о том, что мы живем в большой плоской Вселенной.

На рисунке красной линией показано предсказание инфляционной теории, а черные точки соответствуют экспериментальным данным WMAP. Если бы Вселенная не была плоской, то пик графика находился бы правее или левее.

Вечная и бесконечная

Посмотрим еще раз на рисунок, показывающий простейший потенциал скалярного поля (см. выше). В области, где скалярное поле мало, оно осциллирует, и Вселенная не расширяется экспоненциально. В области, где поле достаточно велико, оно медленно спадает, и на нем возникают маленькие флуктуации. В это время происходит экспоненциальное расширение и идет процесс инфляции. Если бы скалярное поле было еще больше (на графике отмечено голубым цветом), то за счет огромного трения оно бы почти не уменьшалось, квантовые флуктуации были бы огромны, и Вселенная могла стать фрактальной.

Представим, что Вселенная быстро расширяется, а в каком-то месте скалярное поле, вместо того чтобы катиться к минимуму энергии, из-за квантовых флуктуаций подскакивает вверх (см. выше). В том месте, где поле подскочило, Вселенная расширяется экспоненциально быстрее. Низкорасположенное поле вряд ли подскочит, но чем выше оно будет находиться, тем больше вероятность такого развития событий, а значит, и экспоненциально большего объема новой области. В каждой из таких ровных областей поле тоже может подскочить наверх, что приводит к созданию новых экспоненциально растущих частей Вселенной. В результате этого, вместо того чтобы быть похожей на один огромный растущий шар, наш мир становится похожим на вечно растущее дерево, состоящее из многих таких шаров.

Инфляционная теория дает нам единственное известное сейчас объяснение однородности наблюдаемой части Вселенной. Парадоксальным образом эта же теория предсказывает, что в предельно больших масштабах наша Вселенная абсолютно неоднородна и выглядит как огромный фрактал.

На рисунке схематически показано, как одна раздувающаяся область Вселенной порождает все новые и новые ее части. В этом смысле она становится вечной и самовосстанавливающейся.

Свойства пространства-времени и законы взаимодействия элементарных частиц друг с другом в разных областях Вселенной могут быть различны, равно как и размерности пространства, и типы вакуума.

Этот факт заслуживает более детального объяснения. Согласно простейшей теории с одним минимумом потенциальной энергии, скалярное поле катится вниз к этому минимуму. Однако более реалистические версии допускают множество минимумов с разной физикой, что напоминает воду, которая может находиться в разных состояниях: жидком, газообразном и твердом. Разные части Вселенной также могут пребывать в разных фазовых состояниях; это возможно в инфляционной теории даже без учета квантовых флуктуаций.

Следующим шагом, основанным на изучении квантовых флуктуаций, является теория самовосстанавливающейся Вселенной. В этой теории учитывается процесс постоянного воссоздания раздувающихся областей и квантовые скачки из одного вакуумного состояния в другое, перебирающие разные возможности и размерности.

Так Вселенная становится вечной, бесконечной и многообразной. Вся Вселенная никогда не сколлапсирует. Однако это не означает, что отсутствуют сингулярности. Напротив, значительная часть физического объема Вселенной все время находится в состоянии, близком к сингулярному. Но так как различные объемы проходят его в разное время, единого конца пространства-времени, после которого все области исчезают, не существует. И тогда вопрос о множественности миров во времени и в пространстве приобретает совершенно другое звучание: Вселенная может самовоспроизводиться бесконечно во всех своих возможных состояниях.

Это утверждение, в основе которого лежали работы Линде сделанные им в 1986 году, прибрело новое звучание несколько лет назад, когда специалисты по теории струн (лидирующий кандидат на роль теории всех фундаментальных взаимодействий) пришли к выводу что в этой теории возможно 10 100 –10 1000 различных вакуумных состояний. Эти состояния отличаются за счет необычайного разнообразия возможного устройства мира на сверхмалых расстояниях.

В совокупности с теорией самовосстанавливающейся инфляционной Вселенной, это означает, что Вселенная во время инфляции разбивается на бесконечно много частей с невероятно большим количеством разных свойств. Космологи называют этот сценарий теорией вечной инфляционной мультивселенной (multiverse ), а специалисты по теории струн называют это струнным ландшафтом.

25 лет назад инфляционная космология выглядела как нечто промежуточное между физической теорией и научной фантастикой. За прошедшее время многие предсказания этой теории были проверены, и она постепенно приобрела черты стандартной космологической парадигмы. Но успокаиваться еще рано. Эта теория и сейчас продолжает быстро развиваться и меняться. Основная проблема - разработка моделей инфляционной космологии основанных на реалистических вариантах теории элементарных частиц и теории струн. Этот вопрос может быть темой отдельного доклада.

Почему против трех астрофизиков ополчились тридцать три известных ученых самых разных специализаций во главе со Стивеном Хокингом, по каким сценариям образовывалась наша Вселенная и верна ли инфляционная теория ее расширения, сайт разбирался вместе со специалистами.

Стандартная теория Большого взрыва и ее проблемы

Теория горячего Большого взрыва установилась в середине XX века, а общепризнанной стала пару десятилетий спустя после открытия реликтового излучения. Она объясняет многие свойства окружающей нас Вселенной и предполагает, что Вселенная возникла из некоторого начального сингулярного состояния (формально бесконечно плотного) и с тех пор непрерывно расширяется и охлаждается.

Само реликтовое излучение - световое «эхо», родившееся спустя всего 380 000 лет после , - оказалось невероятно ценным источником информации. Львиная доля современной наблюдательной космологии связана с анализом различных параметров реликтового излучения. Оно достаточно однородно, его средняя температура по различным направлениям меняется в масштабе всего 10 –5 , причем эти неоднородности равномерно распределены по небу. В физике такое свойство принято называть статистической изотропией. Это означает, что локально такая величина изменяется, но глобально все выглядит одинаково.

Схема расширения Вселенной

NASA/WMAP Science Team/Wikimedia Commons

Исследуя возмущения реликтового излучения, астрономы с высокой точностью вычисляют многие величины, характеризующие Вселенную в целом: соотношение обычной материи, темной материи и темной энергии, возраст Вселенной, глобальную геометрию Вселенной, вклад нейтрино в эволюцию крупномасштабной структуры и другие.

Несмотря на «общепринятость» теории Большого взрыва, у нее были и недостатки: она не давала ответа на некоторые вопросы возникновения Вселенной. Основные из них получили названия «проблема горизонта» и «проблема плоскостности».

Первая связана с тем, что скорость света конечна, а реликтовое излучение статистически изотропно. Дело в том, что на момент рождения реликтового излучения даже свет не успел пройти расстояние между теми далеко отстоящими на небе точками, откуда мы сегодня его улавливаем. Поэтому непонятно, почему разные области настолько одинаковы, ведь они еще не успели обменяться сигналами с момента рождения Вселенной, их причинные горизонты не пересекаются.

Вторая проблема, проблема плоскостности, связана с неотличимой от нуля (на уровне точности современных экспериментов) глобальной кривизной пространства. Проще говоря, на больших масштабах пространство Вселенной плоское, а из теории горячего Большего взрыва не следует, что плоское пространство более предпочтительно, чем другие варианты кривизны. Поэтому близость этой величины к нулю как минимум неочевидна.

Тридцать три против троих

Для решения этих проблем астрономы создали космологические теории следующего поколения, наиболее успешная из которых - теория инфляционного расширения Вселенной (проще ее называют теорией инфляции). Повышение цен на товары тут ни при чем, хотя оба термина происходят от одного латинского слова - inflatio - «вздутие».

Инфляционная модель Вселенной предполагает, что до горячей стадии (то, что в обычной теории Большого взрыва считается началом времени) существовала другая эпоха с совсем иными свойствами. В то время пространство расширялось экспоненциально быстро благодаря заполнявшему его специфическому полю. За крохотные доли секунды пространство растянулось в невероятное количество раз. Это решило обе вышеупомянутые проблемы: Вселенная оказалась в целом однородной, так как произошла из существовавшего на предыдущей стадии чрезвычайно малого объема. К тому же, если в ней и были какие-то геометрические неоднородности, они разгладились во время инфляционного расширения.

В становлении теории инфляции приняло участие много ученых. Первые модели независимо друг от друга предложили физик, доктор философии Корнеллского университета Алан Гут в США и физик-теоретик, специалист в области гравитации и космологии Алексей Старобинский в СССР около 1980 года. Они отличались механизмами (Гут рассматривал ложный вакуум, а Старобинский - модифицированную общую теорию относительности), но приводили к похожим выводам. Некоторые проблемы изначальных моделей решил советский физик, доктор физико-математических наук, сотрудник Физического института имени П.Н. Лебедева Андрей Линде, который ввел понятие медленно меняющегося потенциала (slow-roll inflation) и объяснил с его помощью завершение стадии экспоненциального расширения. Следующим важным шагом было понимание, что инфляция не порождает идеально симметричную Вселенную, так как необходимо учитывать квантовые флуктуации. Это сделали советские физики, выпускники МФТИ Вячеслав Муханов и Геннадий Чибисов.

Норвежский король Харальд награждает Алана Гута, Андрея Линде и Алексея Старобинского (слева направо) премией Кавли по физике. Осло, сентябрь 2014 года.

Norsk Telegrambyra AS/Reuters

В рамках теории инфляционного расширения ученые делают проверяемые предсказания, некоторые из которых уже подтверждены, но одно из основных - существование реликтовых гравитационных волн - пока подтвердить не удается. Первые попытки их зафиксировать уже делаются , однако на данном этапе это остается за рамками технологических возможностей человечества.

Тем не менее у инфляционной модели Вселенной есть противники, которые считают, что она сформулирована слишком общо, вплоть до того, что с ее помощью можно получить любой результат. Некоторое время эта полемика шла в научной литературе , но недавно группа из трех астрофизиков IS&L (сокращение образовано по первым буквам фамилий ученых - Ijjas, Steinhardt и Loeb - Анны Ийас, Пола Стейнхардта и Абрахама Леба) опубликовала научно-популярное изложение своих претензий к инфляционной космологии в издании Scientific American. В частности, IS&L, ссылаясь на карту температур реликтового излучения, полученную при помощи спутника Planck, считают, что теория инфляции не может быть оценена научными методами. Вместо теории инфляции астрофизики предлагают свой вариант развития событий: якобы Вселенная началась не с Большого взрыва, а с Большого отскока - стремительного сжатия некоей «предыдущей» Вселенной.

В ответ на эту статью 33 ученых, среди которых и основоположники теории инфляции (Алан Гут, Алексей Старобинский, Андрей Линде) и другие известные ученые, например Стивен Хокинг, опубликовали в том же журнале ответное письмо, в котором они категорически не соглашаются с претензиями IS&L.

сайт попросил космологов и астрофизиков высказаться по поводу обоснованности этих претензий, сложностей с интерпретацией предсказаний инфляционных теорий и необходимости пересмотра подхода к теории ранней Вселенной.

Один из основоположников теории инфляционного расширения, профессор физики Стэнфордского университета Андрей Линде, считает претензии надуманными, а сам подход критиков - недобросовестным: «Если отвечать подробно, то получится большая научная статья, а коротко - будет похоже на агитацию. Этим люди и пользуются. Вкратце, лидер критиков - Стейнхардт, который в течение 16 лет пытается создать альтернативу [теории] инфляции, а в его статьях - ошибка на ошибке. Ну, а когда у самого не получается, то появляется желание обругать более популярные теории, применяя методы, хорошо известные из учебников по истории. Большинство теоретиков перестало их читать, но журналисты очень любят. Физика здесь почти что ни при чем».

Кандидат физико-математических наук, сотрудник Института ядерный исследований РАН Сергей Миронов напоминает, что научная истина не может быть рождена в полемике на непрофессиональном уровне. Критическая статья, по его мнению, написана научно и аргументированно, там сведены вместе различные проблемы инфляционной теории. Подобные обзоры необходимы, они помогают предотвратить закостеневание науки.

Однако ситуация меняется, когда такая дискуссия переходит на страницы популярного издания, потому что, правильно ли таким образом продвигать свою научную идею, вопрос спорный. В связи с этим Миронов отмечает, что ответ на критику смотрится некрасиво, так как одна часть из его авторов вообще не специалисты в рассматриваемой области, а другая сама пишет популярные тексты про инфляционную модель. Миронов обращает внимание, что ответная статья написана так, будто авторы даже не читали работу IS&L, и они не привели никаких контраргументов к ней. Утверждения же о провокационной манере, в которой написана заметка с критикой, означают, что «авторы ответа просто повелись на троллинг».

«Доля истины»

Тем не менее ученые, в том числе сторонники инфляционной модели, признают ее недостатки. Физик Александр Виленкин, профессор и директор института космологии в Университете Тафтса в Медфорде (США), который внес важный вклад в становление современной теории инфляции, замечает: «В заявлениях Стейнхардта и коллег есть доля истины, но я думаю, что их претензии чрезвычайно преувеличены. Инфляция предсказывает существование множества областей, подобных нашей, с начальными условиями, которые определяются квантовыми флуктуациями. Теоретически, любые начальные условия возможны с некоторой вероятностью. Проблема заключается в том, что мы не знаем, как посчитать эти вероятности. Количество областей каждого типа бесконечно, поэтому приходится сравнивать бесконечные числа - эта ситуация называется проблемой меры. Конечно, отсутствие единой меры, выводимой из фундаментальной теории, является тревожным знаком».

Упомянутое множество моделей Сергей Миронов относит к недостаткам теории, так как это позволяет подогнать ее под любые экспериментальные наблюдения. А это означает, что теория не удовлетворяет критерию Поппера (согласно этому критерию теория считается научной, если ее можно опровергнуть при помощи эксперимента, - прим. сайт) , по крайней мере в обозримом будущем. Также к проблемам теории Миронов относит тот факт, что в рамках инфляции начальные условия требуют тонкой подстройки параметров, что делает ее в некотором смысле не натуральной. Специалист по ранней Вселенной, кандидат физико-математических наук, сотрудник Научного института Гран-Сассо Национального института ядерной физики (Италия) Сабир Рамазанов также признает реальность этих проблем, но отмечает, что их существование не обязательно означает, что инфляционная теория неверна, но ряд ее аспектов действительно заслуживает более глубокого осмысления.

Создатель одной из первых инфляционных моделей, академик РАН, главный научный сотрудник Института теоретической физики РАН Алексей Старобинский поясняет, что одна из простейших моделей, которую Андрей Линде предложил в 1983 году, действительно была опровергнута. Она предсказывала слишком много гравитационных волн, поэтому недавно Линде указал, что необходимо пересмотреть инфляционные модели.

Критический эксперимент

Астрономы обращают особое внимание на то, что важным предсказанием, которое стало возможным благодаря теории инфляции, стало предсказание реликтовых гравитационных волн. Специалист по анализу реликтового излучения и наблюдательной космологии, доктор физико-математических наук, ведущий научный сотрудник Специальной астрофизической обсерватории РАН Олег Верходанов считает этот прогноз знаменательным наблюдательным тестом для простейших вариантов инфляционного расширения, в то время как для отстаиваемой критиками теории «Большого отскока» такого решающего эксперимента нет.

Иллюстрация теории Большого отскока

Wikimedia Commons

Поэтому говорить о другой теории можно будет только в том случае, если на реликтовые волны установят серьезные ограничения. Сергей Миронов тоже называет потенциальное открытие таких волн серьезным аргументом в пользу инфляции, однако отмечает, что пока их амплитуда только ограничивается, что уже позволило отмести некоторые варианты, на место которых приходят другие, не предсказывающие слишком сильных первичных гравитационных возмущений. Сабир Рамазанов согласен с важностью этого теста и, более того, считает, что инфляционная теория не может считаться доказанной, пока это явление не будет открыто в наблюдениях. Поэтому пока ключевое предсказание инфляционной модели о существовании первичных гравитационных волн с плоским спектром не подтверждено, говорить об инфляции как о физической реальности рано.

«Правильный ответ, от которого старательно пытаются увести читателя»

Алексей Старобинский подробно разобрал претензии IS&L. Он выделил три главных утверждения.

Утверждение 1. Инфляция предсказывает что угодно. Или ничего.

«Правильный ответ, от которого старательно пытаются увести читателя IS&L, состоит в том, что такие слова, как "инфляция", "квантовая теория поля", "модель элементарных частиц", очень общие: они объединяют множество разных моделей, отличающихся степенью сложности (например, количеством сортов нейтрино)», - разъясняет Старобинский.

После того как ученые зафиксируют входящие в каждую конкретную модель свободные параметры из экспериментов или наблюдений, предсказания модели считаются однозначными. Современная Стандартная модель элементарных частиц содержит около 20 таких параметров (это главным образом массы кварков, массы нейтрино и угол их смешивания). Простейшая из жизнеспособных инфляционных моделей содержит только один такой параметр, величина которого фиксируется измеренной амплитудой начального спектра неоднородностей материи. После этого все остальные предсказания однозначны.

Академик уточняет: «Конечно, ее можно усложнить, добавив новые члены различной физической природы, каждый из которых будет входить с новым свободным числовым параметром. Но, во-первых, и в этом случае предсказания будут не "что угодно", а определенными. А во-вторых, и это самое главное, сегодняшние наблюдения показывают, что эти члены не нужны, на современном уровне точности порядка 10% их нет!»

Утверждение 2. Маловероятно, что в рассматриваемых моделях вообще возникнет инфляционная стадия, поскольку в них у потенциальной энергии инфлатона есть длинное плоское «плато».

«Утверждение ложно, - категоричен Старобинский. - В моих работах 1983 и 1987 годов было доказано, что инфляционный режим в моделях такого типа является общим, то есть он возникает во множестве начальных условий с ненулевой мерой». Впоследствии это было доказано и по более строгим математическим критериям, с численными симуляциями и т. д.

Результаты эксперимента Planck, по словам Старобинского, подвергли сомнению точку зрения, которую неоднократно высказывал Андрей Линде. Согласно ей инфляция должна обязательно начинаться на планковской плотности материи, и, уже начиная с этого предельного для классического описания пространства-времени параметра, материя была распределена однородно. Однако в тех доказательствах, о которых шла речь выше, это не предполагалось. То есть в моделях такого типа перед стадией инфляционного расширения находятся анизотропная и неоднородная стадия эволюции Вселенной с большей, чем при инфляции, кривизной пространства-времени.

«Чтобы было понятнее, воспользуемся следующей аналогией, - поясняет космолог. - В общей теории относительности одним из общих решений являются вращающиеся черные дыры, описываемые метрикой Керра. То, что черные дыры - это общие решения, не значит, что они есть повсюду. Например, их нет в Солнечной системе и в ее окрестностях (к счастью для нас). А значит это то, что, поискав, мы их обязательно найдем. Так оно и произошло». В случае инфляции происходит то же самое – эта промежуточная стадия есть не во всех решениях, но в достаточно широком их классе, так что она вполне может возникнуть в однократной реализации, то есть для нашей Вселенной, которая существует в одном экземпляре. А вот то, насколько вероятно это однократное событие, полностью определяется нашими гипотезами о том, что предшествовало инфляции.

Утверждение 3. Квантовое явление «вечной инфляции», которое имеет место почти во всех инфляционных моделях и влечет за собой возникновение мультивселенной, приводит к полной неопределенности предсказаний инфляционного сценария: «Все, что может случиться, случается».

«Утверждение частично ложно, частично не имеет отношения к наблюдаемым эффектам в нашей Вселенной, - непреклонен академик. - Хотя слова в кавычках заимствованы IS&L из обзоров Виленкина и Гута, их смысл искажен. Там они стояли в другом контексте и значили не больше банального даже для школьника замечания, что уравнения физики (например, механики) можно решать для любых начальных условий: где-нибудь и когда-нибудь эти условия реализуются».

Почему «вечная инфляция» и образование «мультивселенной» не влияют на все процессы в нашей Вселенной после конца инфляционной стадии? Дело в том, что они происходят вне нашего светового конуса прошлого (кстати, и будущего тоже)», - объясняет Старобинский. Поэтому нельзя сказать однозначно, происходят ли они в нашем прошлом, настоящем или будущем. «Строго говоря, это верно с точностью до экспоненциально малых квантово-гравитационных эффектов, но во всех существующих последовательных расчетах такими эффектами всегда пренебрегали», - подчеркивает академик.

«Я не хочу сказать, что не интересно исследовать то, что лежит вне нашего светового конуса прошлого, - продолжает Старобинский, - но прямо с наблюдательными данными это пока не связано. Однако и здесь IS&L сбивают читателя с толку: если описывать "вечную инфляцию" правильно, то при заданных условиях в начале инфляционной стадии никакого произвола в предсказаниях не возникает (хотя не все мои коллеги с этим согласны). Более того, многие предсказания, в частности спектр неоднородностей материи и гравитационных волн, возникающих в конце инфляции, от этих начальных условий вообще не зависят», - добавляет космолог.

«Нет острой необходимости в пересмотре основ физики ранней Вселенной»

Олег Верходанов отмечает, что пока отказываться от текущей парадигмы нет оснований: «Конечно, у инфляции есть простор для интерпретации - семейство моделей. Но и среди них можно выбирать наиболее соответствующие распределению пятен на карте реликтового излучения. Пока большинство результатов миссии Planck играет в пользу инфляции». Алексей Старобинский отмечает, что с данными эксперимента Planck, к которым апеллируют IS&L, хорошо согласуется самая первая модель с де-ситтеровской стадией, предшествовавшей горячему Большому взрыву, которую он предложил еще в 1980 году (во время де-ситтеровской стадии, которая длилась около 10 –35 секунды, Вселенная быстро расширялась, заполняющий ее вакуум как бы растягивался без изменения своих свойств, - прим. сайт).

С ним в целом согласен и Сабир Рамазанов: «Ряд предсказаний - гауссовость спектра первичных возмущений, отсутствие мод постоянной кривизны, наклон спектра - нашел подтверждение в данных WMAP и Planck. Инфляция заслуженно играет главенствующую роль в качестве теории ранней Вселенной. На данный момент нет острой необходимости в пересмотре основ физики ранней Вселенной». Космолог Сергей Миронов также признает положительные качества этой теории: «Сама идея инфляции чрезвычайно элегантна, она одним махом позволяет решить все принципиальные проблемы теории горячего Большого взрыва».

«В целом итог по статье IS&L – пустая болтовня от начала до конца, - подытоживает Старобинский. - Она не имеет отношения к реальным проблемам, над которыми сейчас работают космологи». И в то же время академик добавляет: «Другое дело, что любая модель - как общая теория относительности Эйнштейна, как современная модель элементарных частиц, так и модель инфляции - не есть последнее слово науки. Она всегда только приближенна, и на каком-то уровне точности обязательно появятся малые поправки к ней, из которых мы многое узнаем, так как за ними будет стоять новая физика. Именно такие малые поправки и ищут сейчас астрономы».

Один из фрагментов первой микросекунды жизни вселенной сыграл огромную роль в ее дальнейшей эволюции.

Концептуальный прорыв стал возможным благодаря очень красивой гипотезе, родившейся в попытках найти выход из трех серьезных неувязок теории Большого взрыва - проблемы плоской Вселенной, проблемы горизонта и проблемы магнитных монополей.

Редкая частица

С середины 1970-х годов физики начали работать над теоретическими моделями Великого объединения трех фундаментальных взаимодействий - сильного, слабого и электромагнитного. Многие из этих моделей приводили к заключению, что вскоре после Большого взрыва должны были в изобилии рождаться очень массивные частицы, несущие одиночный магнитный заряд. Когда возраст Вселенной достиг 10^–36 секунды (по некоторым оценкам, даже несколько раньше), сильное взаимодействие отделилось от электрослабого и обрело самостоятельность. При этом в вакууме образовались точечные топологические дефекты с массой в 10^15 –10^16 большей, чем масса тогда еще не существовавшего протона. Когда, в свою очередь, электрослабое взаимодействие разделилось на слабое и электромагнитное и появился настоящий электромагнетизм, эти дефекты обрели магнитные заряды и начали новую жизнь - в виде магнитных монополей.

Эта красивая модель поставила космологию перед малоприятной проблемой. «Северные» магнитные монополи аннигилируют при столкновении с «южными», но в остальном эти частицы стабильны. Из-за огромной по меркам микромира массы нанограммового масштаба вскоре после рождения они были обязаны замедлиться до нерелятивистских скоростей, рассеяться по пространству и сохраниться до наших времен. Согласно стандартной модели Большого взрыва, их нынешняя плотность должна приблизительно совпадать с плотностью протонов. Но в этом случае общая плотность космической энергии как минимум в квадриллион раз превышала бы реальную.

Все попытки обнаружить монополи до сих пор завершались неудачей. Как показал поиск монополей в железных рудах и морской воде, отношение их числа к числу протонов не превышает 10^–30. Либо этих частиц вообще нет в нашей области пространства, либо столь мало, что приборы неспособны их зарегистрировать, несмотря на четкую магнитную подпись. Это подтверждают и астрономические наблюдения: наличие монополей должно сказываться на магнитных полях нашей Галактики, а этого не обнаружено.

Конечно, можно допустить, что монополей вообще никогда не было. Некоторые модели объединения фундаментальных взаимодействий и в самом деле не предписывают их появления. Но проблемы горизонта и плоской Вселенной остаются. Так получилось, что в конце 1970-х космология столкнулась с серьезными препятствиями, для преодоления которых явно требовались новые идеи.

Отрицательное давление

И эти идеи не замедлили появиться. Главной из них была гипотеза, согласно которой в космическом пространстве помимо вещества и излучения существует скалярное поле (или поля), создающее отрицательное давление. Такая ситуация выглядит парадоксальной, однако же она встречается в повседневной жизни. Система с положительным давлением, например сжатый газ, при расширении теряет энергию и охлаждается. Эластичная лента, напротив, пребывает в состоянии с отрицательным давлением, ведь, в отличие от газа, она стремится не расшириться, а сжаться. Если такую ленту быстро растянуть, она нагреется и ее тепловая энергия возрастет. При расширении Вселенной поле с отрицательным давлением копит энергию, которая, высвобождаясь, способна породить частицы и кванты света.

Отрицательное давление может иметь различную величину. Но существует особый случай, когда оно равно плотности космической энергии с обратным знаком. При таком раскладе эта плотность остается постоянной при расширении пространства, поскольку отрицательное давление компенсирует растущее «разрежение» частиц и световых квантов. Из уравнений Фридмана–Леметра следует, что Вселенная в этом случае расширяется экспоненциально.

Плоская Вселенная

Увеличивающаяся сфера демонстрирует решение проблемы плоской Вселенной в рамках инфляционной космологии. По мере роста радиуса сферы выбранный участок ее поверхности становится все более и более плоским. Точно таким же образом экспоненциальное расширение пространства-времени на этапе инфляции привело к тому, что сейчас наша Вселенная является почти плоской.

Гипотеза экспоненциального расширения позволяет разрешить все три проблемы, приведенные выше. Предположим, что Вселенная возникла из крошечного «пузырька» сильно искривленного пространства, который претерпел превращение, наделившее пространство отрицательным давлением и тем заставившее его расширяться по экспоненциальному закону. Естественно, что после исчезновения этого давления Вселенная возвратится к прежнему «нормальному» расширению.

Решение проблем

Будем считать, что радиус Вселенной перед выходом на экспоненту всего на несколько порядков превышал планковскую длину, 10^–35 м. Если в экспоненциальной фазе он вырастет, скажем, в 10^50 раз, то к ее концу достигнет тысяч световых лет. Каким бы ни было отличие параметра кривизны пространства от единицы до начала расширения, к его концу оно уменьшится в 10^–100 раз, то есть пространство станет идеально плоским!

Аналогично решается проблема монополей. Если топологические дефекты, ставшие их предшественниками, возникли до или даже в процессе экспоненциального расширения, то к его концу они должны отдалиться друг от друга на исполинские расстояния. С тех пор Вселенная еще изрядно расширилась, и плотность монополей упала практически до нуля. Вычисления показывают, что даже если исследовать космический кубик с ребром в миллиард световых лет, то там с высочайшей степенью вероятности не найдется ни единого монополя.

Модель космологической инфляции, решающая многие неувязки теории Большого взрыва, утверждает, что за очень короткое время размер пузырька, из которого образовалась наша Вселенная, увеличился в 10^50 раз. После этого Вселенная продолжила расширяться, но уже значительно медленнее.

Гипотеза экспоненциального расширения подсказывает и простое избавление от проблемы горизонта. Предположим, что размер зародышевого «пузырька», положившего начало нашей Вселенной, не превышал пути, который успел пройти свет после Большого взрыва. В этом случае в нем могло установиться тепловое равновесие, обеспечившее равенство температур по всему объему, которое сохранилось при экспоненциальном расширении. Подобное объяснение присутствует во многих учебниках космологии, однако можно обойтись и без него.

Из одного пузыря

На рубеже 1970–1980-х несколько теоретиков, первым из которых стал советский физик Алексей Старобинский, рассмотрели модели ранней эволюции Вселенной с короткой стадией экспоненциального расширения. В 1981 году американец Алан Гут опубликовал работу, привлекшую к этой идее всеобщее внимание. Он первым понял, что подобное расширение (скорее всего, завершившееся на возрастной отметке в 10^–34 с) снимает проблему монополей, которыми он поначалу и занимался, и указывает путь к разрешению неувязок с плоской геометрией и горизонтом. Гут красиво назвал такое расширение космологической инфляцией, и этот термин стал общепринятым.

Но модель Гута всё же имела серьезный недостаток. Она допускала возникновение множества инфляционных областей, претерпевающих столкновения друг с другом. Это вело к формированию сильно неупорядоченного космоса с неоднородной плотностью вещества и излучения, который совершенно не похож на реальное космическое пространство. Однако вскоре Андрей Линде из Физического института Академии наук (ФИАН), а чуть позже Андреас Альбрехт с Полом Стейнхардтом из Университета Пенсильвании показали, что если изменить уравнение скалярного поля, то всё становится на свои места. Отсюда следовал сценарий, по которому вся наша наблюдаемая Вселенная возникла из одного вакуумного пузыря, отделенного от других инфляционных областей непредставимо большими расстояниями.

Хаотическая инфляция

В 1983 году Андрей Линде совершил очередной прорыв, разработав теорию хаотической инфляции, которая позволила объяснить и состав Вселенной, и однородность реликтового излучения. Во время инфляции любые предшествующие неоднородности скалярного поля растягиваются настолько, что практически исчезают. На завершающем этапе инфляции это поле начинает быстро осциллировать вблизи минимума своей потенциальной энергии. При этом в изобилии рождаются частицы и фотоны, которые интенсивно взаимодействуют друг с другом и достигают равновесной температуры. Так что по окончании инфляции мы имеем плоскую горячую Вселенную, которая затем расширяется уже по сценарию Большого взрыва. Этот механизм объясняет, почему сегодня мы наблюдаем реликтовое излучение с мизерными колебаниями температуры, которые можно приписать квантовым флуктуациям в первой фазе существования Вселенной. Таким образом, теория хаотической инфляции разрешила проблему горизонта и без допущения, что до начала экспоненциального расширения зародышевая Вселенная пребывала в состоянии теплового равновесия.

Потеря связи

Реликтовое излучение, которое мы сейчас видим с Земли, приходит с расстояния 46 млрд. световых лет (по сопутствующей шкале), пропутешествовав чуть менее 14 млрд. лет. Однако когда это излучение начало свое странствие, возраст Вселенной насчитывал всего лишь 300 000 лет. За это время свет мог пройти путь, соответственно, лишь в 300 000 световых лет (маленькие окружности), и две точки на иллюстрации просто не смогли бы связаться друг с другом - их космологические горизонты не пересекаются.

Согласно модели Линде, распределение вещества и излучения в пространстве после инфляции просто обязано быть почти идеально однородным, за исключением следов первичных квантовых флуктуаций. Эти флуктуации породили локальные колебания плотности, которые со временем дали начало галактическим скоплениям и разделяющим их космическим пустотам. Очень важно, что без инфляционного «растяжения» флуктуации оказались бы слишком слабыми и не смогли бы стать зародышами галактик. В общем, инфляционный механизм обладает чрезвычайно мощной и универсальной космологической креативностью - если угодно, предстает в качестве вселенского демиурга. Так что заглавие этой статьи - отнюдь не преувеличение.

Плоская проблема

Астрономы уже давно уверились в том, что если нынешнее космическое пространство и деформировано, то довольно умеренно.

Геометрия космоса

Локальная геометрия Вселенной определяется безразмерным параметром: если он меньше единицы, Вселенная будет гиперболической (открытой), если больше - сферической (закрытой), а если в точности равен единице - плоской. Даже очень небольшие отклонения от единицы со временем могут привести к значительному изменению этого параметра. На иллюстрации синим показан график параметра для нашей Вселенной.

Модели Фридмана и Леметра позволяют вычислить, какой была искривленность пространства вскоре после Большого взрыва. Кривизна оценивается с помощью безразмерного параметра, равного отношению средней плотности космической энергии к тому ее значению, при котором эта кривизна делается равна нулю, а геометрия Вселенной, соответственно, становится плоской. Лет 40 назад уже не было сомнений, что если этот параметр и отличается от единицы, то не больше, чем в десять раз в ту или иную сторону. Отсюда следует, что через одну секунду после Большого взрыва он отличался от единицы в большую или меньшую сторону всего лишь на 10^–14! Случайна такая фантастически точная «настройка» или обусловлена физическими причинами? Именно так в 1979 году сформулировали задачу американские физики Роберт Дике и Джеймс Пиблз.

В масштабах порядка сотых долей величины Вселенной (сейчас это сотни мегапарсек) ее состав был и остается однородным и изотропным. Однако на шкале всего космоса однородность исчезает. Инфляция прекращается в одной области и начинается в другой, и так до бесконечности. Это самовоспроизводящийся бесконечный процесс, порождающий ветвящееся множество миров - Мультивселенную. Одни и те же фундаментальные физические законы могут там реализоваться в различных ипостасях - к примеру, внутриядерные силы и заряд электрона в других вселенных могут оказаться отличными от наших. Эту фантастическую картину в настоящее время на полном серьезе обсуждают и физики, и космологи.

Борьба идей

«Основные идеи инфляционного сценария были сформулированы три десятка лет назад, - объясняет «ПМ» один из авторов инфляционной космологии, профессор Стэнфордского университета Андрей Линде. - После этого главной задачей стала разработка реалистических теорий, основанных на этих идеях, но только критерии реалистичности не раз изменялись. В1980-х доминировало мнение, что инфляцию удастся понять с помощью моделей Великого объединения. Потом надежды растаяли, и инфляцию стали интерпретировать в контексте теории супергравитации, а позднее - теории суперструн. Однако такой путь оказался очень нелегким. Во-первых, обе эти теории используют чрезвычайно сложную математику, а во-вторых, они так устроены, что реализовать с их помощью инфляционный сценарий весьма и весьма непросто. Поэтому прогресс здесь оказался довольно медленным. В 2000 году трое японских ученых с немалым трудом получили в рамках теории супергравитации модель хаотической инфляции, которую я придумал почти на 20 лет раньше. Спустя три года мы в Стэнфорде сделали работу, которая показала принципиальную возможность конструирования инфляционных моделей с помощью теории суперструн и объясняла на ее основе четырехмерность нашего мира. Конкретно, мы выяснили, что так можно получить вакуумное состояние с положительной космологической постоянной, которое необходимо для запуска инфляции. Наш подход с успехом развили другие ученые, и это весьма способствовало прогрессу космологии. Сейчас понятно, что теория суперструн допускает существование гигантского количества вакуумных состояний, дающих начало экспоненциальному расширению Вселенной.

Там, за горизонтом

Проблема горизонта связана с реликтовым излучением. Из какой бы точки горизонта оно ни пришло, его температура постоянна с точностью до 0,001%.

Нормальное расширение со скоростями, меньшими скорости света, приводит к тому, что вся Вселенная рано или поздно будет находиться внутри нашего горизонта событий. Инфляционное расширение со скоростями, значительно превышающими скорость света, привело к тому, что нашему наблюдению доступна лишь малая часть Вселенной, образовавшейся при Большом взрыве. Это позволяет решить проблему горизонта и объяснить одинаковую температуру реликтового излучения, приходящего из различных точек небосвода.

В 1970-х этих данных еще не было, но астрономы и тогда полагали, что колебания не превышают 0,1%. В этом и состояла загадка. Кванты микроволнового излучения разлетелись по космосу приблизительно через 400 000 лет после Большого взрыва. Если Вселенная все время эволюционировала по Фридману–Леметру, то фотоны, пришедшие на Землю с участков небесной сферы, разделенных угловым расстоянием более двух градусов, были испущены из областей пространства, которые тогда не могли иметь друг с другом ничего общего. Между ними лежали расстояния, которые свет попросту не успел бы преодолеть за все время тогдашнего существования Вселенной - иначе говоря, их космологические горизонты не пересекались. Поэтому у них не было возможности установить друг с другом тепловое равновесие, которое почти точно уравняло бы их температуры. Но если эти области не были связаны в ранние моменты образования, как они оказались практически одинаково нагреты? Если это и совпадение, то слишком уж странное.

Теперь следует сделать еще один шаг и понять устройство нашей Вселенной. Эти работы ведутся, но встречают огромные технические трудности, и что получится в результате, пока не ясно. Мои коллеги и я последние два года занимаемся семейством гибридных моделей, которые опираются и на суперструны, и на супергравитацию. Прогресс есть, мы уже способны описать многие реально существующие вещи. Например, мы близки к пониманию того, почему сейчас столь невелика плотность энергии вакуума, которая всего втрое превышает плотность частиц и излучения. Но необходимо двигаться дальше. Мы с нетерпением ожидаем результатов наблюдений космической обсерватории Planck, которая измеряет спектральные характеристики реликтового излучения с очень высоким разрешением. Не исключено, что показания ее приборов пустят под нож целые классы инфляционных моделей и дадут стимул к развитию альтернативных теорий».

Инфляционная космология может похвастаться немалым числом замечательных достижений. Она предсказала плоскую геометрию нашей Вселенной задолго до того, как этот факт подтвердили астрономы и астрофизики. Вплоть до конца 1990-х считалось, что при полном учете всего вещества Вселенной численная величина параметра не превышает 1/3. Понадобилось открыть темную энергию, чтобы удостовериться, что эта величина практически равна единице, как и следует из инфляционного сценария. Были предсказаны колебания температуры реликтового излучения и заранее вычислен их спектр. Подобных примеров немало. Попытки опровергнуть инфляционную теорию предпринимались неоднократно, но это никому не удалось. Кроме того, как считает Андрей Линде, в последние годы сложилась концепция множественности вселенных, формирование которой вполне можно назвать научной революцией: «Несмотря на свою незавершенность, она становится частью культуры нового поколения физиков и космологов».

Наравне с эволюцией

«Инфляционная парадигма реализована сейчас во множестве вариантов, среди которых нет признанного лидера, - говорит директор Института космологии при университете Тафтса Александр Виленкин. - Моделей много, но никто не знает, которая из них правильная. Поэтому говорить о каком-то драматическом прогрессе, достигнутом в последние годы, я бы не стал. Да и сложностей пока хватает. Например, не совсем понятно, как сравнивать вероятности событий, предсказанных той или иной моделью. В вечной вселенной любое событие должно происходить бесчисленное множество раз. Так что для вычисления вероятностей надо сравнивать бесконечности, а это очень непросто. Также существует нерешенная проблема начала инфляции. Скорее всего, без него не обойтись, но еще не понятно, как к нему подобраться. И все же у инфляционной картины мира нет серьезных конкурентов. Я бы сравнил ее с теорией Дарвина, которая поначалу тоже имела множество неувязок. Однако альтернативы у нее так и не появилось, и в конце концов она завоевала признание ученых. Мне кажется, что и концепция космологической инфляции прекрасно справится со всеми трудностями».