В россии создана линия связи для передачи секретных данных на основе квантовой криптографии. Канал связи квантовый

Технологический прогресс в области телекоммуникаций не стоит на месте. Вроде только недавно высокоскоростной интернет стал добираться до самых отдаленных уголков нашей планеты, как уже ученные говорят про внедрение квантовой связи.

Что такое квантовая связь и как работает квантовая связь?

Квантовая связь – это совокупность методов для передачи закодированной информации в квантовых состояниях из одной точки в другую. Квантовая связь дает возможность передавать информацию в зашифрованном виде.

Главная идея квантовой криптографии заключается в полной зашифрованности сообщений, что делает невозможным ее перехват третьими лицами. Каждое передаваемое сообщение содержит свой уникальный секретный ключ. Причем абсолютная секретность передаваемой информации обеспечивается не вычислительными и техническими возможностями, а законами природы.

Сигналы передаются с помощью потока одиночных фотонов. Фотон невозможно разделить, измерить, скопировать или незаметно убрать. Из-за подобных действий фотон просто разрушается и не может дойти до своего получателя.

Применение квантовой связи: квантовые линии связи, спутник квантовой связи, квантовая телефонная связь

Сегодня связь на основе квантовой запутанности находит применение именно в тех сферах, где требуются особые условия безопасности, как например, в банковской сфере.

В России в 2016 году у нас была проложена первая в стране линия квантовой связи. Эта линия соединила 2 филиала Газпрома в Москве. А общая протяженность этой квантовой линии связи немного превысила 30 км.

А недавно была запущена и первая междугородная линия в Ленинградской области. Ее протяженность уже составила 60 км.

Но такая наземная связь не имеет глобальных масштабов. Расширить границы применения квантовой связи позволит спутник, на который возлагаются очень большие надежды. За счет применения спутника квантовой связи ученые рассчитывают увеличить реализацию схемы квантового распределения ключа до 7 тыс. км. А если подобных спутников будет множество, они смогут не только обеспечить глобальное распространение квантового интернета, но и квантовую связь в космосе.

Первый подобный спутник был запущен Китаем в 2016 году. Основной целью запуска китайского квантового спутника связи являлось изучение распределения квантовой связи по маршруту «Спутник-Земля». И уже были проведены успешные эксперименты, в рамках которых сигнал от Micius прошел через атмосферу и был принят двумя наземными станциями. В 2017 году было завершено тестирования спутника квантовой связи в Китае. Спутник введен в эксплуатацию.

А в 2017 году в МГУ был протестирован первый квантовый телефон. Помимо защищенности связи, ученные сообщают о том, что квантовому телефону абсолютно не страшны ни расстояния, ни погодные условия. В разработке такого телефона достигнута полная помехозащищенность.

Активно развивается квантовая связь и в Корее. Уже сейчас в Южной Корее готовятся к выпуску городских кроссоверов, снабженных такими телефонами. Считается, что квантовая телефонная связь вполне может вытеснить привычные нам сотовые телефоны.

Возможные проблемы квантовой связи

Квантовая связь только начинает свое развитие. А поэтому ученным и разработчикам приходится сталкиваться с некоторыми проблемами.

Основная проблема – это финансирование. Изучение и развитие линий квантовой связи требует больших вложений. Причем пока сеть до конца не изучена, отдачи от этих вложений практически не происходит. Но правительства стран прекрасно понимают, какие перспективы открывает квантовая связь, а поэтому не жалеют финансов на ее развитие.

Еще одной проблемой выступает тот факт, что бит может копироваться лишь один раз. А это значит, что информацию по квантовому каналу связи можно только передать. А дальше с ней уже не получится что-либо сделать. В данный момент ученные пытаются разрешить эту проблему. Так, сейчас пытаются, используя квантовые технологии связи, создавать перепутанные пары фотонов. С их помощью можно будет посылать в два конца из одной точки и связывать между собой две удаленные точки. Если создать множество таких узлов, то можно будет организовать линию связи на бесконечно большие расстояния. Но для реализации задумки также требуется квантовая память. А ее создание находится только в процессе разработки.

Сергей Кузнецов

Редактор

Квантовая связь без лишнего шума

Ученые из исследовательского центра Toshiba в Кембриджском университете, кажется, сумели совершить очередной прорыв в квантовой связи. Об уровне прорыва говорит то, что их статья удостоилась публикации в топовом Nature . Авторы статьи утверждают, что им удалось передавать зашифрованные при помощи квантового распределения ключей (quantum key distribution, QKD) данные по обычному коммерческому оптоволокну на 550 километров с «управляемым уровнем шума» - и это без использования квантовых повторителей. То есть им удалось превзойти некий предел соотношения «толщины» канала и расстояния передачи данных.


Чтобы понять, насколько это важно, давайте разберемся, что такое квантовое распределение ключей, о котором говорится в новой работе.

Обычно, когда речь заходит о квантовой криптографии, прибегают к трем персонам – Алисе и Бобу, которые хотят приватно пообщаться, и Еве, которая хочет их подслушать. Существует теорема Вернама, согласно которой Ева никогда не сможет прочесть их переписку, если Алиса и Боб разделят ключ, длина которого равна длине их сообщений. Но, зная это, все правильные шпионы обычно стремятся скрытно скопировать ключ в тот самый момент, когда его распределяют Алиса и Боб.

Тут нам на помощь приходит квантовый мир, в котором существует запрет на клонирование (читай: копирование) неизвестного квантового состояния. Да-да, тут речь идет именно о той самой квантовой запутанности. Исходя из этого в 1984 году Чарльз Беннет и Жиль Брассар предложили систему квантового распределения ключей, разработав протокол BB84.

Что это означает в реальности? По факту Алиса отправляет Бобу отдельные фотоны, которые имеют, например, один из четырех видов поляризации (вертикальная, горизонтальная и две диагональных).

Например, вертикальная и горизонтальная поляризация кодируют «ноль» и «единицу» в одном методе измерения, а две диагональных поляризации отвечают «нулю» и «единице» в другом методе измерения. Затем Боб случайным образом выбирает способ измерения состояния фотона. Лишь если способ приготовления и измерения фотона совпадают, Алиса и Боб записывают полученный бит в секретный ключ шифрования. Вместо поляризации можно использовать изменение фазы фотона.

Но есть несколько фундаментальных проблем. Во-первых, это проблема устройства, способного отправлять одиночные фотоны. На практике в коммерческих линиях квантовой связи часто пользуются очень слабыми лазерными импульсами, хотя прогресс в разработке однофотонных источников тоже достигнут. А во-вторых, так как передача сигнала осуществляется отдельными фотонами, возникает проблема шума. Оптоволокно по-разному нагревается (тепловые фотоны), может быть по-разному изогнуто и так далее.

Поэтому на нынешний момент существуют аппаратно-независимые пределы пропускной способности квантовой связи в зависимости от расстояния. На практике это 1,26 мегабита в секунду на расстояние 50 километров по стандартному кабелю и - сравните - 1,16 бита в час (!) на расстояние в 404 километра (символично) по специальному кабелю с ультранизкими потерями данных.

Вот вам пример: в прошлом августе китайские исследователи опубликовали в том же Nature результаты эксперимента по реализации протоколов квантовой криптографии между космосом и Землей. Тогда со спутника «Мо Цзы» на расстояние в 1200 километров более 300 килобайт секретного ключа. Это стало возможно потому, что и околоземное пространство, и верхние слои атмосферы почти не шумят. По обычному оптоволокну на 1200 километров один бит просеянного ключа передавали бы около шести миллиардов лет.

Чтобы передавать сигнал на более далекое расстояние, специалисты по квантовой связи работают над квантовыми повторителями. Можно подумать, что это - квантовые ретрансляторы, однако на самом деле принцип их работы совсем другой.

Мы уже говорили, что в квантовом мире невозможно клонировать квантовое состояние. А ведь обычный ретранслятор электромагнитного сигнала (радио, например), делает именно это: воспринимает сигнал и воспроизводит его заново. С квантовым посланием так обращаться нельзя. Поэтому квантовый повторитель – это скорее обычный квантовый компьютер, который способен хранить исходный сигнал (кубит). Однако пока что квантовые повторители на практике – дело будущего.

А вот теперь вернемся к статье кембриджцев.

Как мы помним, Алиса у нас отправляет фотоны Бобу. То есть у Алисы есть лазер, у Боба – детекторы фотонов. Однако авторы предлагают ввести в уравнение Чарли, который расположен посередине. Чарли - «на аутсорсе», ему отдаются детекторы. И Алиса, и Боб генерируют фазово-рандомизированные оптические поля, которые объединяются у Чарли. Поля, передаваемые с той же случайной фазой, являются «близнецами» и могут быть использованы для выделения квантового ключа.

В такой схеме «двупольного» квантового распределения ключей (twin field quantum key distribution, TF-QKD) существует такая же зависимость потери сигнала от расстояния, однако за счет этого хитрого хода удается сохранять приемлемый шум еще на протяжении 550 километров. Действительно, прорыв!

Дело в том, что в предложенной схеме «шум» представляет собой дрифт (сползание) фазового сдвига, которое можно компенсировать, если станция Чарли будет работать фазовым модулятором, корректируя дрифт. Это делает возможным квантовую связь «с управляемым шумом» на расстояние в полтысячи километров по обычному оптоволокну, что было просто невозможно без использования квантовых повторителей.

Представьте себе такую линию связи, которую невозможно прослушать. Вообще никак. Что бы ни делал злоумышленник и кем бы он ни был, попытки взломать защиту к успеху не приведут. Устройства для такой передачи данных, использующей принципы квантовой криптографии, создают в ООО «Квантовые коммуникации» – малом инновационном предприятии при Университете ИТМО. Генеральный директор предприятия и руководитель университетской лаборатории квантовой информатики Международного института фотоники и оптоинформатики Артур Глейм участвовал в XII Международных чтениях по квантовой оптике (IWQO-2015) в Москве и подмосковном Троицке, где он выступил с докладом о квантовой рассылке ключа шифрования на так называемых боковых частотах. О том, как этот способ позволяет улучшить качество передачи данных и как вообще работают квантовые коммуникации, Артур Глейм рассказывает в интервью нашему порталу.

Что такое квантовая криптография и зачем она нужна?

Главная идея квантовой криптографии – передавать информацию таким образом, чтобы ее было нельзя перехватить. Причем это должно быть невозможно не потому, что алгоритмы шифрования слишком сложные, и не из-за того, что злоумышленник не располагает достаточно высокими вычислительными мощностями. Мы строим систему передачи данных так, что ее взлом противоречит законам физики.

Если мы управляем какой-то системой, которую потенциально может нарушить злоумышленник, нам нужно передавать данные доверенным образом. Это могут быть, например, решения, связанные с финансами, коммерческой тайной, государственными задачами и так далее. Квантовая криптография, квантовая связь и квантовые коммуникации решают задачу так, что перехватывать информацию ограниченного доступа запрещает сама природа. Сигналы передаются по линиям связи не в классическом виде, а с помощью потока одиночных фотонов. Фотон нельзя разделить или измерить, скопировать или незаметно отвести в сторону. Он из-за этого однозначно разрушается и не доходит до принимающей стороны.

Ключевой вопрос в том, как сделать это эффективно, так как мы используем не идеальную систему, а физические линии связи – оптическое волокно или открытое пространство. На пути к получателю на фотон может воздействовать много факторов, которые могут его разрушить. Так как мы говорим о практическом применении, нас интересует скорость передачи данных между такими системами и максимальное расстояние, на которое мы можем разнести узлы. Это основные предметы разработки различных подходов, идей и принципов построения систем квантовой криптографии: эффективность использования канала передачи данных, пропускная способность и уменьшение количества повторителей, а главное – наивысший уровень защищенности и безопасности канала. В основе квантовой криптографии лежит тезис о том, что злоумышленник может пытаться делать что угодно, использовать любые инструментарий и оборудование – хотя бы технику пришельцев, но перехватить данные он не должен. А на базовый принцип уже «накручиваются» технические решения.

На каких физических принципах основывается квантовая коммуникация?

Существует несколько схем реализации этих принципов, разные подходы, которые вносят свои возможности по увеличению скорости и дальности передачи сообщений. Системы квантовой криптографии давно производятся коммерческими компаниями. Но специалисты Университета ИТМО предложили новый принцип, который иначе формулирует понятие квантового состояния, «способа приготовления» фотона как порции излучения, чтобы он был более устойчивым к внешним воздействиям, система связи не требовала дополнительных средств организации устойчивой передачи и не несла в себе явных ограничений на скорость модуляции сигнала со стороны отправителя и получателя. Мы выносим квантовые сигналы на так называемые боковые частоты, это позволяет значительно расширить возможности по скорости и снять явные ограничения по дальности, присущие уже принятым схемам.

Чтобы понять, в чем отличие вашего метода, давайте все-таки начнем с принципов работы классических схем.

Обычно люди, когда строят системы квантовой связи, генерируют слабый импульс, эквивалентный или близкий к энергии одиночного фотона, и отправляют его по линии связи. Чтобы закодировать в импульсе квантовую информацию, проводят модуляцию сигнала – изменяют поляризацию или фазовое состояние. Если мы говорим про волоконно-оптические линии связи, для них более эффективно использовать фазовые состояния, потому что сохранять и передавать поляризацию они не умеют.

Вообще фаза фотона – это вульгаризм, который придумали экспериментаторы в области квантовой физики. Фотон – это частица, у нее нет фазы, но она является частью волны. А фаза волны – это характеристика, которая показывает некоторую отстройку состояния поля электромагнитной волны. Если представить волну как синусоиду на координатной плоскости, сдвиги ее положения относительно начала координат соответствуют некоторым состояниям фазы.

Говоря простыми словами, когда человек шагает, шаг – это процесс, который повторяется по кругу, у него тоже есть период, как у волны. Если два человека идут в ногу – фазы совпадают, если не в ногу – то фазовые состояния разные. Если же один начинает движение в середине шага другого, то их шаги находятся в противофазе.

Для того, чтобы закодировать в импульсе квантовую информацию, используют модулирующее устройство, которое сдвигает волну, а чтобы измерить сдвиг, мы складываем эту волну с такой же и смотрим, что получится. Если волны находятся в противофазе, то две величины накладываются и гасят друг друга, на выходе мы получаем ноль. Если же мы угадали, то синусоиды складываются, поле увеличивается и итоговый сигнал получается высокий. Это называется конструктивной интерференцией излучения, ее можно проиллюстрировать теми же человеческими шагами.

В начале прошлого века в Петербурге рухнул Египетский мост, когда по нему маршировал взвод солдат. Если просто взять сумму всех шагов, для того, чтобы разрушить мост, энергии не хватит. Но когда шаги попадают в такт, происходит интерференция, нагрузка повышается, и мост не выдерживает. Поэтому сейчас солдатам, если они переходят через мост, отдают команду сбить шаг – идти не в ногу.

Итак, если наши фазовые предположения совпали и сигнал усилился, значит, фазу фотона мы измерили правильно. В классических системах квантовой коммуникации используются распределенные интерферометры, и они определяют квантовую информацию по положению сдвига фазы волны. Воплотить это на практике сложно – линии связи могут греться и охлаждаться, может присутствовать вибрация, все это меняет качество передачи. Фаза волны начинает смещаться сама, и мы не знаем, то ли отправитель ее так «промодулировал», то ли это помехи.

А чем отличается использование боковых частот?

Наш принцип заключается в том, что мы отправляем в линию связи специальный спектр. Это можно сравнить с музыкой – в спектре мелодии много частот, и каждая оставляет за собой звучание. Здесь примерно то же самое: мы берем лазер, который генерирует импульсы только на одной частоте, пропускаем импульс через электрооптический фазовый модулятор. На модулятор подается сигнал на другой частоте, существенно более низкой, и в результате кодирование осуществляется не основной синусоидой, а параметрами вспомогательной синусоиды – ее частотой смены фазы, фазовым положением. Мы передаем квантовую информацию отстройкой дополнительных частот в спектре импульса относительно центральной частоты.

Такое шифрование становится куда более надежным, так как спектр передается по линиям связи одним импульсом, и если среда передачи вносит какие-то изменения, их претерпевает весь импульс целиком. Мы также можем добавить не одну дополнительную частоту, а несколько, и одним потоком единичных фотонов мы можем поддерживать, к примеру, пять каналов связи. В итоге нам не нужен интерферометр в явном виде – он «зашит» внутри импульса, нет нужды в схемах компенсации дефектов в линии, нет ограничений на скорость и дальность передачи данных, а эффективность использования линий связи – не 4%, как в случае с классическими подходами, а до 40%.

Этот принцип придумал главный научный сотрудник Центра информационных и оптических технологий Университета ИТМО Юрий Мазуренко . Сейчас кодирование квантовой информации на боковых частотах также развивают две ученые группы во Франции и Испании, но в наиболее развернутом и полном виде система реализована у нас.

Как теория воплощается на практике?

Все эти квантовые премудрости нужны для формирования секретного ключа – случайной последовательности, которую мы перемешиваем с данными, чтобы их в итоге было невозможно перехватить. По принципу действия системы для безопасной передачи эквивалентны VPN-роутеру, когда мы через внешний интернет прокладываем локальную сеть, чтобы в нее никто не ломился. Мы устанавливаем два устройства, у каждого из которых есть порт, который подключается к компьютеру, и порт, который «смотрит» во внешний мир. Отправитель подает данные на вход, устройство их шифрует и безопасно передает через внешний мир, вторая сторона принимает сигнал, расшифровывает и передает получателю.

Допустим, такое устройство покупает банк, его устанавливают в серверное помещение и используют как коммутатор. Понимать принцип работы банку не нужно – нужно только знать, что за счет основ квантовой физики получаются такие степень безопасности и доверия к линии, которая на порядок выше классических сред передачи информации.

Как именно происходит шифрование?

В устройствах стоит генератор случайных чисел (причем физический, не псевдо-ГСЧ), и каждое устройство задает квантовое состояние фотонов случайным образов. В квантовой коммуникации отправителя принято называть «Алиса», а получателя – «Боб» (А и Б). Допустим, Алиса и Боб выбрали квантовое состояние, соответствующее 0, фазы оптического излучения совпали, получился высокий уровень сигнала и детектор фотонов Боба сработал. Если Алиса выбрала 0, а Боб 1, фазы разные и детектор не срабатывает. Дальше приемная сторона говорит, когда фазы совпали, допустим, на первой, пятой, пятнадцатой, сто пятьдесят пятой передачах, в остальных случаях либо были разные фазы, либо фотоны не дошли. Для ключа мы оставляем только то, что совпало. И Алиса, и Боб знают, что у них совпали передачи 1, 5, 15 и 155, но что они при этом передавали – 0 или 1 – знают только они и никто больше.

Допустим, мы станем подкидывать монетки, а третий человек будет говорить, совпали у нас выпавшие стороны или нет. У меня выпала решка, нам сказали, что монетки совпали, и я буду знать, что у вас тоже выпала решка. То же и в квантовой криптографии, но с одним условием: третья сторона не знает, что именно у нас выпало – орел или решка, это знаем только мы. Алиса и Боб копят случайные, но одинаковые биты, накладывают их на сообщение и получают идеальный шифротекст: абсолютно случайная последовательность плюс осмысленное сообщение равно абсолютно случайная последовательность.

Почему у злоумышленника не получится взломать систему?

Фотон один, делить его нельзя. Если его убрать из линии, Боб ничего не получит, детектор фотонов не сработает, и отправитель с получателем просто не станут использовать этот бит в ключе. Да, злоумышленник может перехватить этот фотон, но бит, который в нем зашифрован, не будет использован в передаче, он бесполезен. Скопировать фотон тоже невозможно – замер в любом случае его разрушает, даже когда фотон измеряет легитимный пользователь.

Есть несколько режимов использования данных систем. Для того, чтобы получить идеальную защиту, длина ключа должна быть равна длине сообщения бит в бит. Но еще их можно использовать для того, чтобы существенно повысить качество классических шифров. Когда происходит смешение квантовых битов и классических шифров, стойкость шифров вырастает по экспоненте, существенно быстрее, чем если бы мы просто увеличивали количество разрядов в ключе.

Допустим, банк выдает клиенту карточку на доступ к онлайн-клиенту, срок жизни ключа в карточке – год (считается, что за этот срок ключ не будет скомпрометирован). Система квантовой криптографии позволяет на лету менять ключи шифрования – сто раз в секунду, тысячу раз в секунду.

Оба режима возможны, если нам необходимо передать предельно конфиденциальные данные. В таком случае кодировать их можно бит в бит. Если же мы хотим значительно повысить степень защиты, но сохранить высокую скорость передачи, то мы перемешиваем квантовые и классические ключи, и получаем оба преимущества – высокую скорость и высокую защиту. Конкретная же скорость передачи данных зависит от условий используемых шифров и режимов кода.

Беседовал Александр Пушкаш ,
Редакция новостного Университета ИТМО

Российский и чешско-словацкий физики предложили метод сохранения квантовой запутанности фотонов при прохождении усилителя или передаче на большое расстояние.

Квантовая запутанность или сцепленность частиц – явление связи их квантовых характеристик. Она может возникать при рождении частиц в одном событии или их взаимодействии. Эта связь может сохраняться, даже если частицы расходятся на большое расстояние, что позволяет передавать с их помощью информацию. Дело в том, что если измерить квантовые характеристики одной из связанных частиц, то автоматически становятся известны и характеристики второй. Эффект не имеет аналогов в классической физике. Он был экспериментально доказан в 1970 – 80-х годах, и его активно изучают в последние несколько десятилетий. В перспективе он может стать основой целого ряда информационных технологий будущего.

Забавную житейскую аналогию этого явления придумал один из его исследователей, физик-теоретик Джон Белл. Его коллега Рейнгольд Бертлман страдал рассеянностью и часто приходил на работу в носках разного цвета. Предсказать эти цвета было невозможно, но Белл шутил, что достаточно увидеть розовый носок на левой ноге Бертлмана, чтобы сделать вывод, что на правой ноге у него носок другого цвета, даже не видя его.

Одна из проблем практического использования явления квантовой запутанности заключается в нарушении связи при взаимодействии частиц с окружающим миром. Такое может произойти при усилении сигнала или при его передаче на большое расстояние. Эти два фактора могут действовать и вместе, поскольку для передачи сигнала на большое расстояние его надо усиливать. Поэтому фотоны после прохождения через многие километры оптоволокна в большинстве случаев перестают быть квантово запутанными и превращаются в обычные, не связанные между собой кванты света. Чтобы избежать разрушения связи в экспериментах по квантовым вычислениям, приходится использовать охлаждение до близких к абсолютному нулю температур.

Физики Сергей Филиппов (МФТИ и Российский квантовый центр в Сколково) и Марио Зиман (Масариков университет в Брно, Чехия, и Физический институт в Братиславе, Словакия) нашли способ сохранить квантовую запутанность фотонов при прохождении через усилитель или, напротив, при передаче на большое расстояние. Подробности опубликованы в статье (см. также препринт) для журнала Physical Review A.

Суть их предложения заключается в том, что для передачи сигналов определенного вида необходимо, чтобы «волновая функция частиц в координатном представлении не должна иметь вид гауссова волнового пакета». В этом случае вероятность разрушения квантовой запутанности становится намного ниже.

Волновая функция – одно из базовых понятий квантовой механики. Она используется для описания состояния квантовой системы. В частности, явление квантовой запутанности описывается на основе представлений об общем состоянии связанных частиц с определенной волновой функцией. В соответствии с копенгагенской интерпретацией квантовой механики физический смысл волновой функции квантового объекта в координатном представлении заключается в том, что квадрат ее модуля определяет вероятность обнаружить объект в данной точке. С ее помощью можно также получить информацию об импульсе, энергии или еще какой-либо физической величине объекта.

Гауссова функция - одна из важнейших математических функций, нашедшая применение не только в физике, но и во многих других науках вплоть до социологии и экономики, имеющих дело с вероятностными событиями и использующих статистические методы. Очень многие процессы в природе приводят к этой функции при математической обработке результатов наблюдений. Ее график выглядит как колоколообразная кривая.

Обычные фотоны, которые используются сейчас в большинстве экспериментов по квантовому запутыванию, тоже описываются гауссовой функцией: вероятность найти фотон в той или иной точке в зависимости от координат точки имеет колоколообразный гауссов вид. Как показали авторы работы, в этом случае переслать запутанность далеко не получится, даже если сигнал очень мощный.

Использование фотонов, волновая функция которых имеет иную, негауссову, форму, должна существенно повысить число доходящих до адресата запутанных фотонных пар. Однако это не означает, что сигнал можно будет передать через сколь угодно непрозрачную среду или на сколь угодно большое расстояние, – если соотношение сигнал/шум падает ниже некоторого критического порога, то эффект квантовой запутанности исчезает в любом случае.

Физики уже научились создавать запутанные фотоны, разнесенные на несколько сотен километров, и нашли им несколько очень перспективных применений. Например, для создания квантового компьютера. Это направление представляется многообещающим благодаря высокому быстродействию и низкому энергопотреблению фотонных устройств.

Другое направление – квантовая криптография, позволяющая создать линии связи, в которых всегда можно обнаружить «прослушивание». Она основана на том, что любое наблюдение за объектом есть воздействие на него. А воздействие на квантовый объект всегда меняет его состояние. Это означает, что попытка перехватить сообщение должна привести к разрушению спутанности, о чем сразу станет известно получателю.

Кроме того, квантовая запутанность позволяет реализовать так называемую квантовую телепортацию. Ее не надо путать с телепортацией (переносом в пространстве) предметов и людей из фантастических фильмов. В случае квантовой телепортации на расстояние передается не сам объект, а информация о его квантовом состоянии. Все дело в том, что все квантовые объекты (фотоны, элементарные частицы), а вместе с ними и атомы одного вида являются абсолютно одинаковыми. Поэтому, если атом в точке приема приобретает квантовое состояние, идентичное атому в точке передачи, то это эквивалентно созданию копии атома в точке приема. Если бы существовала возможность переноса квантового состояния всех атомов предмета, то в месте приема возникла бы его идеальная копия. С целью передачи информации можно телепортировать кубиты – наименьшие элементы для хранения информации в квантовом компьютере.

По материалам сайта МФТИ

КВАНТОВАЯ СВЯЗЬ, совокупность методов для передачи квантовой информации, т. е. информации, закодированной в квантовых состояниях (КС), из одной пространственной точки в другую. Носителями квантовой информации являются квантовые системы, которые могут находиться в различных квантовых состояниях.

Обмен информацией между удалёнными пользователями происходит с учётом типа КС, которые, в отличие от классических состояний, могут быть неортогональными и перепутанными (сцепленными). Кодирование классической информации в неортогональные КС даёт возможность сопровождать каждое сообщение собственным секретным ключом, т. е. разрешить одну из основных проблем классической криптографии - безусловно секретное распределение ключей. Свойство перепутанности КС позволяет обеспечить доставку двух идентичных последовательностей битов двум удалённым пользователям с гарантией, что информация, содержащаяся в них, недоступна третьей стороне. И в первом, и во втором случае абсолютная секретность передаваемых данных обеспечивается не вычислительными и техническими возможностями легитимных пользователей и потенциального перехватчика, а законами природы, основанными на линейности и унитарности квантовых преобразований и на неопределенностей соотношениях (смотри Квантовая криптография).

Наиболее подходящими квантовыми системами, используемыми для передачи КС на большие расстояния, являются фотоны. Они распространяются со скоростью света, позволяют кодировать информацию в частотных, фазовых, амплитудных, поляризационных и временных переменных. К тому же использование фотонов как носителей информации позволяет применять ряд технологических достижений в области классических телекоммуникаций - оптические волоконные линии связи, всевозможные модуляторы и преобразователи оптических сигналов.

Состояния фотонов, в которых кодируется информация, выбираются из числа степеней свободы электромагнитного поля, которые могут быть непрерывными и дискретными. Непрерывными степенями свободы обладают квантовые системы с большой (в пределе - бесконечной) размерностью гильбертова пространства, например квадратурные амплитуды какой-либо моды квантованного электромагнитного поля или коллективные состояния ансамбля атомных систем. Перепутанные состояния систем с непрерывными переменными реализуются за счёт использования сжатых состояний света, причём сжатие квадратурных квантовых флуктуаций происходит в результате нелинейных оптических процессов.

Для систем с дискретными переменными размерность гильбертова пространства конечна. Простейшей системой такого типа является двухуровневая система, которая может быть реализована, например, на поляризационных степенях свободы фотона. В состояниях двухуровневой системы физически реализуется квантовый бит информации, называемый кубитом (q-бит, qubit, от английского quantum bit). Протоколы квантовой связи на основе кубитов (под протоколами понимают последовательность действий, приводящих к решению задачи) являются наиболее разработанными.

Любая система квантовой связи состоит из источника квантовых состояний, среды, в которой распространяются эти состояния (канала связи), и детекторов, измеряющих КС. Для генерации КС на отдельных фотонах в основном используют сильно ослабленные лазерные импульсы. Если исходное лазерное излучение имеет пуассоновскую статистику, то, вводя заданное ослабление, можно рассчитать среднее число фотонов в импульсе, а также долю вакуумной, однофотонной, двухфотонной и других компонент. В современных системах квантовой криптографии принято использовать среднее число фотонов на уровне 0,1, т. е. когда в каждом десятом импульсе присутствует примерно один фотон. Неизбежное статистическое присутствие многофотонных компонент ограничивает секретность передаваемых данных.

Перепутанные состояния пар фотонов генерируются в процессе спонтанного параметрического рассеяния (СПР) света. В зависимости от режима СПР перепутывание происходит между разными степенями свободы фотонов. Различают пространственно-поляризационные, частотно-поляризационные, время-энергетические и другие типы перепутанных состояний. В процессе вынужденного параметрического рассеяния генерируются сжатые состояния света - аналог перепутанных состояний при больших интенсивностях излучения.

Среда, в которой распространяются КС, представляет собой волоконно-оптические линии связи или открытое пространство. Стандартные волоконно-оптические линии связи изготавливаются из плавленого кварца и имеют минимальные потери на длинах волн 1,3 мкм и 1,55 мкм. Если каналом связи является открытое пространство, то минимальные потери происходят на длине волны 0,8 мкм и в области 4-10 мкм. Именно на этих длинах волн генерируются оптические КС в зависимости от типа линии связи.

Для измерения КС используются в основном лавинные фотодиоды. В диапазоне 1,3-1,55 мкм это диоды на основе полупроводниковых структур типа InGaAs/InP с квантовой эффективностью около 10%. В диапазоне 0,8 мкм используются кремниевые лавинные фотодиоды с квантовой эффективностью около 50%. Разрабатываются другие типы детекторов, например на основе сверхпроводящих структур. В будущем для записи, хранения и обработки квантовой информации предполагается использовать квантовые интерфейсы и квантовую память.

Квантовые связи различают по числу квантовых систем, вовлечённых в кодирование квантовой информации. При однофотонной квантовой связи информация кодируется в состояниях единичных фотонов. При двухфотонной квантовой связи для дистанционного приготовления нужного состояния используется перепутывание пары фотонов. Трёхфотонная квантовая связь применяется для передачи однофотонного КС без непосредственной связи между двумя пространственно-временными точками за счёт квантовой телепортации. Квантовая телепортация - способ передачи произвольных (заранее неизвестных) квантовых состояний из одной точки в другую, используя перепутанные состояния, распределённые между этими двумя точками, и обмен классическими данными между ними. При телепортации одного кубита используют два бита классической информации. Четырёхфотонная квантовая связь применяется для телепортации перепутывания или квантового обмена перепутыванием. Этот тип квантовой связи очень важен для создания квантовых ретрансляторов и квантовых повторителей (ретранслятор + квантовая память). Развитие квантовой связи перспективно через низкоорбитальные спутники.

Лит.: Килин С. Я. Квантовая информация // Успехи физических наук. 1999. Т. 168. Вып. 5; Физика квантовой информации / Под редакцией Д. Боумейстера и др. М., 2002; Нильсен М., Чанг И. Квантовые вычисления и квантовая информация. М., 2006.