Основные параметры режима обработки деталей резанием. Элементы режима резания и срезаемого слоя

Под режимом резания подразуме­вается совокупность глубины резания, подачи, скорости резания и стойкости инструмента.

Элементы режима резания уста­навливаются в такой последователь­ности: сначала определяется макси­мально возможная глубина резания (допустимая технологией обработки); по выбранной глубине определяется максимальная величина подачи (допу­стимая технологией обработки); по выбранной глубине и подаче, задав­шись определенным периодом стойко­сти инструмента, находят допустимую скорость резания. Затем производится проверка выбранных элементов режи­ма резания. Подачу контролируют по прочности механизмов станка, ско­ рость - по соответствию мощности резания и мощности станка.

Глубина резания определяется в основном припуском, оставленным на обработку. Если нет ограничений по точности и шероховатости обработки, то весь припуск срезают за один рабо­чий ход. Если технические условия не позволяют производить обработку за один рабочий ход, припуск разбивают на черновые и чистовые рабочие ходы. Черновые рабочие ходы выполняют с максимальной глубиной резания, а на чистовые оставляют минимальный припуск, обеспечивающий изготовле­ние детали с заданной шерохова­тостью и допуском.

Подача. Для повышения произво­дительности труда целесообразно ра­ботать с максимально возможной по­дачей. Величина подачи, как правило, ограничивается крутящим моментом станка, прочностью слабого звена ме­ханизма подачи, жесткостью обраба­тываемой детали, прочностью инстру­мента и требованиями шероховатости обрабатываемой поверхности. Вели­чины подач на практике обычно берут­ся из справочников.

Скорость резания. После определе­ния глубины резания и подачи опреде­ляется скорость резания.

Частота вращения шпинделя п (в об/мин) станка определяется по фор­муле

Расчетная частота вращения кор­ректируется с учетом действительной частоты вращения станка. По дейст­вительной частоте вращения подсчиты­вается действительная скорость реза­ния. Действительная частота враще­ния станка не должна отличаться от расчетной более чем на 5 %.

Проверка выбранных элементов режима резания

Проверка скорости. Проверка ско­рости производится по мощности станка. Может оказаться, что мощно­сти данного станка будет недостаточ­но для того, чтобы вести обработку с выбранными основными элементами режима резания. Расчетная мощность электродвигателя станкаN рез должна быть меньше или, по крайней мере, равна мощности электродвигателя станкаN ст , т. е.N рез N ст .

Если окажется, что мощности стан­ка не хватает, то принятую скорость необходимо уменьшить.

Проверка подачи. При черновой об­работке назначенная подача обяза­тельно проверяется по прочности де­талей механизма подачи станка. Опре­деляется осевая составляющая силы резанияР x при принятой подаче. Она должна быть меньше или, по крайней мере, равна наибольшей силе, допус­каемой прочностью механизма станкаP ст , которая указывается в паспорте станка завода-изготовителя, т. е. Р x Р ст . В случае еслиР x Р ст , необхо­димо подачу уменьшить.

§ 14. Сведения об инструментальных материалах. Требования, предъявляемые к ним

В конце прошлого. и в начале на­шего столетия процессы снятия струж­ки в металлообрабатывающей про­мышленности были на очень низком уровне развития.. Главным инструмен­тальным материалом была углероди­стая сталь, обладающая низкой износостойкостью и недостаточной способ­ностью противостоять тепловым на­грузкам. В процессе резания режущая кромка инструмента, изготовленная из инструментальной стали с содержани­ем углерода 1,2 % и закаленная до твердости 66 HRC, могла противо­стоять температурам 200-250 °С и до­пускать обработку со скоростями ре­зания 10-15 м/мин.

Несколько позднее появились ин­струментальные стали, легированные присадками хрома, вольфрама, мо­либдена, ванадия и др., которые поз­волили работать со скоростями 20- 25 м/мин. Резцы из углеродистых и ле­гированных сталей изготовляются цельными, из одного куска металла.

В первые два десятилетия двадца­того столетия была открыта быстроре­жущая сталь (1906), которая при со­держании в ней вольфрама около 19 % могла работать при температу­ре до 650 °С. Быстрорежущие стали допускают работу при скоростях реза­ния, в 2-3 раза превышающих ско­рости, возможные при использовании инструментов, изготовленных из инст­рументальных углеродистых сталей.

Дальнейшие эксперименты с мате­риалами, имеющими повышенное со­держание кобальта (Со), хрома (Сг) и вольфрама (W), привели к получе­нию сплава из этих металлов - стел­лита (1915) с температурным преде­лом 800 °С.

Эти два новых материала явились большим достижением в области об­работки резанием. Для обточки сталь­ного валика диаметром 100 мм и дли­ной 500 мм резцом из инструментальной стали требовалось 100 мин ма­шинного времени. Быстрорежущая сталь позволила сократить это время До 26 мин, а резцы из стеллита дове­ли его до 15 мин.

В 1920 г. впервые был получен металлокерамический твердый сплав. Этому открытию суждено было сыг­рать самую важную роль в развитии режущего инструмента. В 30-е годы металлокерамические твердые сплавы нашли широкое применение в металло­обработке. Уже первые инструменты из твердых сплавов позволили умень­шить время обработки образцового валика до 6 мин. Сейчас этот инструментальный материал занимает доми­нирующее положение в области реза­ния металлов.

Твердые сплавы сохраняют отно­сительно высокую твердость при на­греве до температуры 800-900 °С и позволяют вести обработку на высо­ких скоростях резания. При соответ­ствующих геометрических параметрах инструмента скорость резания дости­гает 500 м/мин при обработке сталей марки 45 и 2700 м/мин при обработке алюминия. Твердосплавным инстру­ментом можно обрабатывать детали из закаленной (HRC до 67) и труднообрабатываемых сталей.

Твердые сплавы выпускаются в ви­де пластинок, стандартизованных по форме и размерам, и сплошных или пустотелых столбиков. Важным собы­тием в инструментальной промыш­ленности было создание на основе принципа «неперетачиваемости» в се­редине 50-х годов инструментов с поворотными неперетачиваемыми пла­стинками.

При износе одной режущей кромки пластинка не снимается на переточку, а поворачивается, и новая режущая кромка продолжает резание. В 50-е годы появился минералокерамический материал. Его производство очень схо­же с процессом изготовления металлокерамических твердых сплавов. Осно­вой минералокерамических материа­лов является очень часто корунд (окись алюминия Аl 2 О 3). Минералокерамика не нашла, однако, широкого применения. Главной причиной тому является недостаточная прочность.

В 1969-1973 гг. появились пово­ротные пластинки с покрытием, сущ­ность которого заключается в том, что на прочную твердосплавную основу наносится слой износостойкого карби­да. Первые твердосплавные пластин­ки имели слой карбида титана тол­щиной 4-5 мкм. Применение покры­тия увеличило срок службы пластинок примерно на 300 %. Столь сущест­венное улучшение объясняется тем, что наносимый слой действует как диффузионный барьер, имеющий вы­сокую химическую стабильность при повышенных температурах.

В 1976 г. были созданы пластинки с двухслойным покрытием (типа GG015) с использованием окиси алю­миния. Наружный слой толщиной в 1 мкм делается из окиси алюминия, а промежуточный слой толщиной и 6мкм - из карбида титана.

Твердосплавные пластинки с двух­слойным, покрытием этого типа обладают отличными режущими свойствами при высоких, средних и низких режимах резания при обработке стали, чугуна при температурах до 1300 °С.

Особое место среди инструмёнтальных материалов занимают алмазы, яв­ляющиеся самыми твердыми, самыми износостойкими материалами, но хрупкими и самыми дорогими из всех материалов.

В нашей стране на основе кубического нитрида бора (вещества, состоящего из атомов азота и бора) создан новый сверхтвердый; синтетический материал эльбор, обладающий большой твердостью (до 9000 кгс/мм 2) и высокой теплостойкостью (1400 С). Эльбор химически инертен по отношению к углеродсодержащим материалам и более прочен, чем алмаз. Инструмент, изготовленный из эльбора, имеет высокую износостойкость. Эльбор в виде порошка используют для изготовления шлифовальных кругов и дру­гого абразивного инструмента, а эль­бор в виде столбиков - для изготовле­ния резцов.

На рис.19 развитие инструменталь­ных материалов изображено в форме

Рис. 19. Диаграмма развития инструментальных материалов

графика, на котором по оси абсцисс отложены годы, а по оси ординат - время, требовавшееся для обточки од­ного и того же валика в разные годы нынешнего столетия. Как видно из Графика, время обработки образцово­го валика сократилось со 100 мин в начале 1900-х г. до 1 мин в середине 1970."х г.

Требования, предъявляемые к ин­струментальным материалам. Режущие материалы должны удовлетворять следующим основным требованиям:

высокой твердости, значительно превосходящей твердость обрабатываемого металла;

высокой механической прочности - режущая поверхность инструмента должна выдерживать большое давление, без хрупкого разрушения и заметного пластичного деформирования;

высокой теплостойкости - материал должен сохранять при нагре­ве твердость, достаточную для осуществления процесса резания;

высокой износоустойчиво­сти - способности материала работать продолжительное время при вы­сокой температуре.

Для изготовления инструмента применяют следующие группы материалов, в различной степени (в разных условиях) удовлетворяющие этим требованиям: 1) инструментальные углеродистые стали; 2) инструментальные легированные стали; 3) быстрорежу­щие стали; 4) металлокерамические твердые сплавы; 5) минералокерамические материалы; 6) алмазы; 7) аб­разивные материалы; 8) конструк­ционные стали.

В табл. 2 приведены свойства ос­новных инструментальных материалов, а на диаграмме (рис. 20) - твер­дость их в зависимости от температу­ры резания.

Инструментальные углеродистые стали . Для изготовления режущих ин­струментов применяются углеродистые стали марок: У7, У8, ..., У13, У7А, У8А, ..., У13А. Буква У указывает, что сталь углеродистая; цифры-среднее содержание в процентах углерода;

2. Свойства основных инструментальных материалов

Инструментальный материал

материал

Твердость, HRA

Предел прочности на изгиб, Н/м 10 7

Предел прочности на сжатие Н/м 10 7

Теплопроводность, Вт/м*К

Теплостойкость. град

Коэффициент относительной допустимой скорости резания

Углеродистая сталь

Быстрорежу­щая сталь

Твердый сплав

Минералокерамика

Рис. 20. Зависимость твердости инструмен­тальных материалов от температуры

буква А показывает, что сталь повы­шенного качества с минимальным (не­большим) содержанием вредных при­месей. Марки и их состав даны в ГОСТ 1435-54.

Инструмент, изготовленный из уг­леродистой стали, позволяет вести об­работку при скоростях резания 10- 15 м/мин и при температурах резания 200-250°С.

Из углеродистых сталей изготовля­ют слесарные и режущие инструмен­ты, работающие на низких скоростях. Из стали У9А изготовляют зубила, из стали У13 - шаберы, напильники. Учитывая, что углеродистая сталь хо­рошо шлифуется, сталь У12А применя­ют для изготовления метчиков, необ­ходимых, для обработки точных резьб с мелким шагом.

Легированные инструментальные стали. Легированные инструменталь­ные стали отличаются от углеродистых наличием в них легирующих элемен­тов - хрома, вольфрама, молибдена, ванадия, марганца, кремния. Стали с такими добавками называются леги­рованными инструментальными сталя­ми. Легированные стали выдерживают температуру нагрева 250-300°С и дают возможность работать со скоростью резания 20-25 м/мин. Наибольшее распространение получили марки ХВ5, ХВГ, 9ХС, ХГ. Из стали ХВ5 изготовляются развертки и фасонные резцы. Из стали ХВГ изготовляются протяжки крупных размеров Сталь 9ХС отличается высокой карбидной однородностью. Из нее изготовляются инструменты с тонкими режущими элементами - сверла, раз вертки, метчики, плашки, концевые фрезы небольших диаметров. Химический состав легированных сталей группы и марки даны в ГОСТ 5950- 63.

Быстрорежущие стали. Быстрорежущие инструментальные стали отличаются от легированных большим со держанием в них вольфрама, ванадия хрома, молибдена. Быстрорежущие стали обладают более высокой твердостью, прочностью, износостойкость и теплостойкостью. Они не теряют своих режущих свойств при температур 550-600 °С и позволяют работать со скоростью резания в 2,5-3 раза выше, чем инструменты, изготовленные из углеродистых сталей, и в 1,5 раз, выше, чем инструменты, изготовленные из легированных сталей. Быстро режущие стали подразделяются н, стали нормальной производительности (Р18, Р9 и др.) и стали повышенной производительности (Р18Ф2К5, Р9Ф2К5 и др.). Наибольшее распространение получили стали Р9 и Р18. Твердость этих сталей - HRC 62-64 Быстрорежущие стали нормальной производительности позволяют работать со скоростью резания до 60 м/мин, а повышенной производительности - до 100 м/мин. Из быстрорежущих сталей изготовляются инструменты мно­гих наименований: резцы, сверла, зен­керы, развертки, цилиндрические фрезы, червячные фрезы, долбяки, протяжки и др.

Твердые сплавы. Для изготовления режущей части инструмента применя­ют металлокерамические твердые сплавы. Металлокерамические спла­вы получают спеканием порошков карбидов тугоплавких металлов: вольфрама, титана, тантала и связываю­щего их кобальта. Твердые сплавы об­ладают высокой теплостойкостью (до 1000°С) и износостойкостью. Они поз­воляют работать со скоростями реза­ния в 3-4 раза большими по сравне­нию с инструментами из быстрорежу­щей стали. Твердые сплавы выпуска­ются в виде пластинок определенной формы и стандартных размеров (ГОСТ 2209-69).

Область применения твердых сплавов указана в ГОСТ 3882-74. Из твердых сплавов изготовляются рез­цы различных типов, сверла, зенкеры, развертки, торцовые фрезы, червяч­ные фрезы, метчики и др.

Минералокерамические материалы. Для изготовления режущей части ин­струмента применяют минералокерамические материалы (микролит, терликорунд). Микролит, так же как и твердые сплавы, получают спеканием. Пластинки минеральной керамики об­ладают высокой твердостью (HRA=91-93), высокой теплостойкостью (до 1200 °С) и износостойкостью. Не­достатками керамических материалов являются хрупкость и пониженная прочность. Наиболее высокими режу­щими свойствами обладает материал марки ЦН-332.

Керамические материалы применя­ют главным образом при получистовом и чистовом точении и при чистовом и тонком фрезеровании торцовыми фре­зами с неперетачиваемыми пластин­ками.

Алмаз . Алмаз является самым твердым из всех инструментальных материалов. Твердость алмаза в 7 раз превосходит твердость карбида вольф­рама и в 3,5 раза - карбида титана. Алмаз обладает высокой теплопровод­ностью и высокой износостойкостью. Недостатками алмаза являются хруп­кость, низкая критическая температу­ра (700-750 °С) и дороговизна.

Алмазы бывают естественные и синтетические. В природе алмазы встречаются в виде кристаллов и сросшихся кристаллических зерен и кристалликов. Искусственные (синтетические) алмазы получают из обыч­ного графита воздействием на него вы­соких температур и давления. Синтетические алмазы типа «Карбонадо», «Баллас» выпускаются в виде кристал­лов и порошков. Шлифовальные круги из синтетических алмазов применяются для заточки и доводки твердосплав­ных режущих инструментов.

Алмазом оснащаются резцы, тор­цовые фрезы и перовые сверла. В ре­жущих инструментах применяются кристаллы массой от 931 до 0,75 кара­та (1 карат равен 0,2 г).

Кубический нитрид бора. Отечест­венная промышленность выпускает синтетические материалы того же на­значения, что и искусственные алмазы. К ним относится в первую очередь кубический нитрид бора. Он представ­ляет собой химическое соединение бо­ра и азота. Технология его изготовле­ния аналогична с производством син­тетических алмазов. Исходным мате­риалом является нитрид бора, свойст­ва которого сходны со свойствами гра­фита. Промышленные марки кубичес­кого нитрида бора «эльбор Р», «компо­зит», «кубинит» обладают высокой твердостью, высокой теплоемкостью и высокой износостойкостью.

Марки типа «эльбор Р» обладают свойствами, значительно превосходя­щими минеральную керамику и твер­дые сплавы. Резцы из эльбора приме­няют для тонкого чистового точения закаленных сталей (с твердостью HRC45-60), хромоникелевых чугунов. Торцовые фрезы из эльбора поз­воляют производить чистовое фрезеро­вание закаленных сталей и получать шероховатость поверхности доRa 1,25 мкм.

В последнее время освоено произ­водство крупных поликристаллических образований нитрида бора с диамет­ром 3-4 мм и длиной 5-6 мм, обла­дающих высокой прочностью. Осна­щение такими поликристаллами рез­цов и торцовых фрез позволяет обра­батывать закаленные стали с твер­достью HRC до 50 и высокопрочных чугунов с параметрами шероховато­сти до Ra 0,50 мкм.

Конструкционные стали. Для изго­товления державок, корпусов хвостови­ков и деталей для клеймения состав­ного инструмента применяют конструк­ционные стали: Ст5» Стб, стали 40, 45, 50 и др.

При обработке заготовки на токарном станке необходимы движения формообразования, т. е. обрабатываемая заготовка и режущий инструмент должны совершать определенные дви­жения. Эти движения подразделяются на основные, служащие для осуществления процесса резания, и вспомогательные, не участвующие непосредственно в процессе резания. Основными являются движения резания (вращение шпинделя станка с закрепленной на нем заготовкой) и подачи (продольное или по­перечное перемещение режущего инструмента, жестко закреп­ленного в резцедержателе станка). Процесс обработки на то­карном станке определяется режимом резания.

Глубина резания t, мм, - толщина стружки, срезаемой за

один проход, измерен­ная в направлении, пер­пендикулярном обраба­тываемой поверхности (рис. 91, а).. При наружном про­дольном точении

где D - диаметр заго­товки, мм; d - диа­метр обработанной по­верхности, мм.

Рис.91.Элементы режима резания при точении

Скорость резания v, м/мин - перемещение в единицу времени про­извольной точки, взя­той на активной части

главной режущей кромки, относительно обрабатываемой поверх­ности заготовки. Так как обрабатываемая поверхность имеет различные диаметры, то скорость резания в различных точках активной части главной режущей кромки является величиной переменной (рис. 91, б). Максимальная скорость

где D - наибольший диаметр, обрабатываемой поверхности, мм; n - частота вращения шпинделя, об/мин.

При продольном точении скорость резания имеет постоянную величину на протяжении всего времени резания. При подрезке торца, когда резец движется от периферии заготовки к центру, скорость резания переменна и равна нулю в центре заготовки.

Подача - перемещение режущей кромки инструмента относи­тельно обработанной поверхности заготовки в единицу времени. При токарной обработке различают оборотную подачу S 0 , мм/об, т. е. перемещение режущей кромки инструмента за один оборот заготовки и минутную подачу S, мм/мин, т. е. перемещение за 1 мин. При этом S = S 0 n.

Значения t, v и S, зависящие от условий обработки, физико-механических характеристик материала заготовки, материала ре­жущей части инструмента, вида обработки и жесткости, приве­дены в справочной литературе.

От выбора режима резания (глубины резания, подачи и скорости резания) зависит производительность труда, качество и стоимость изготовления обрабатываемых деталей.

Токарь должен уметь правильно выбирать режимы резания, исходя из наилучшего использования режущих свойств резца и мощности станка при обеспечении заданных точности и чистоты обработки.

1. Глубина резания

Припуск на обработку можно снять в один или несколько проходов; выгоднее работать с возможно меньшим количеством проходов. Следует весь припуск снимать за один проход, если мощность и прочность станка, а также прочность резца и жесткость обрабатываемой детали допускают это. Если же припуск на обработку велик, а обработанная поверхность должна быть точной и чистой, следует припуск распределить на два прохода, оставляя на чистовую обработку 0,5-1 мм на сторону или 1-2 мм по диаметру.

2. Подача

Для получения наибольшей производительности следует работать с возможно большими подачами.

Величина подачи при черновой обработке - ограничивается жесткостью детали, прочностью резца и слабых звеньев механизма подачи станка.

Величина подачи при получистовой и чистовой обработке определяется требованиями чистоты обработанной поверхности и точности детали. Примерные подачи для получистового точения указаны в табл. 4. При работе резцами В. Колесова (см. рис. 62) при получистовой, а в ряде случаев и чистовой обработке сталей подача может быть очень большой - порядка 1,5-3 мм/об. Рекомендуемые значения подач при обработке металлов по методу В. Колесова приведены в табл. 5.

Таблица 4

Средние подачи при получистовом точении стали

Таблица 5

Рекомендуемые подачи при обработке металлов
по методу В. А. Колесова (по данным Уралмашзавода)

Примечание . Меньшие значения подач приведены для более прочных материалов, большие - для менее прочных.

3. Скорость резания

Скорость резания зависит главным образом от обрабатываемого материала, материала и стойкости резца, глубины резания, подачи и охлаждения.

На основании опыта токарей-скоростников передовых заводов и лабораторных исследований разработаны специальные таблицы, по которым можно выбрать необходимую скорость резания при обработке твердосплавными резцами.

В качестве примера в табл. 6 приводятся рекомендуемые скорости резания для различных глубин резания и подач при продольном точении конструкционных углеродистых и легированных сталей с пределом прочности при растяжении сигмаb = 75 кг/мм² твердосплавными резцами Т15К6.

Скорости резания, указанные в табл. 6, рассчитаны на определенные условия резания. Они предусматривают обработку точением сталей σ b = 75 кг/мм² твердосплавными резцами Т15К6 с главным углом в плане φ = 45° при стойкости резца Т = 90 мин.

При условиях, отличающихся от указанных в табл. 6, следует табличные данные по скорости резания помножить на соответствующие коэффициенты, приводимые ниже.

Коэффициенты, учитывающие прочность обрабатываемого материала:
Коэффициенты, учитывающие стойкость резца: Коэффициенты, учитывающие марку твердого сплава:

Таблица 6

Режимы резания
при точении конструкционных и легированных сталей
спределом прочности при разрыве
σ b = 75 кг/мм²
резцами с пластинками Т15К6


4. Требования, предъявляемые к современным токарным станкам

К токарным станкам, предназначенным для высокопроизводительного точения, предъявляются более высокие требования, чем к обычным токарным станкам.

При работе на высоких скоростях резания появляется опасность возникновения вибраций вследствие недостаточной жесткости станков, наличия излишних зазоров в подшипниках шпинделя и в подвижных соединениях суппорта, неуравновешенности отдельных быстро вращающихся частей станка, патрона или обрабатываемой детали.

Следовательно, для спокойной без вибраций работы станка его отдельные части (шпиндель, суппорт, задняя бабка) должны обладать достаточной жесткостью, а вращающиеся части должны быть тщательно уравновешены.

Мощность токарного станка для скоростного резания должна быть большей, так как, чем выше скорость резания, тем большая требуется мощность электродвигателя.

Этим требованиям удовлетворяют станки, выпускаемые отечественной станкостроительной промышленностью, например то-карно-винторезный станок 1А62, подробно нами рассмотренный, станок 1К62 и др.

Однако для высокопроизводительного резания можно в ряде случаев применять токарные станки старых моделей, имеющиеся на заводах, с некоторой переделкой их основных узлов.

Такая переделка станков называется модернизацией .

Переделка существующих станков под высокопроизводительное резание в одних случаях сводится главным образом к увеличению чисел оборотов шпинделя и замене имеющегося электродвигателя более мощным; в других же случаях требуется более сложная переделка, например, приходится изменять устройство фрикционной муфты, главного привода, добавлять устройства для принудительной смазки шпинделя, усиливать отдельные звенья станка и т. д.

Увеличение числа оборотов шпинделя является одним из широко применяемых мероприятий при переводе станков на скоростное резание и достигается изменением диаметров существующих шкивов. Одновременно заменяют также электродвигатель более мощным. Плоскоременную передачу от электродвигателя к станку заменяют клиноременной (см. рис. 2, б). Такая передача позволяет получить, не меняя ширины шкива, требуемую повышенную мощность и более высокое передаточное отношение.

Станки, переводимые на скоростную обработку, должны быть тщательно проверены, а в случае необходимости отремонтированы. При ремонте следует обращать внимание на подшипники передней бабки, фрикционную муфту, суппорт и др. Подшипники шпинделя должны быть тщательно отрегулированы, зазоры в подвижных частях суппорта устранены путем подтяжки клиньев. Фрикционная муфта должна быть проверена, а в случае необходимости соответственно усилена. Станок должен быть всегда хорошо смазан, особенно его коробка скоростей.

Прочная установка станка на фундаменте является необходимым условием для избежания вибраций, в особенности для станков с неуравновешенными вращающимися частями.

Контрольные вопросы 1. Расскажите о порядке выбора глубины резания и подачи.
2. Выберите скорость резания при точении конструкционной стали σ b = 75 кг/мм² при глубине резания t - 3 мм твердосплавным резцом Т15К6, пользуясь табл. 6, принимая подачу s = 0,2 мм/об.
3. Выберите скорость резания при точении σ b = 50-60 кг/мм² при глубине резания t = 2 мм твердосплавным резцом Т5К10 при подаче s = 0,25 мм/об.
4. Выберите скорость резания при точении легированной стали σ b = 100 кг/мм² при глубине резания t = 1 мм твердосплавным резцом Т30К4 при подаче s = 0,15 мм/об и при стойкости резца в 30 мин.
5. Каким основным требованиям должен удовлетворять токарный станок для скоростного резания?
6. Что называется модернизацией станка?
7. Перечислите основные пути, модернизации существующих станков для скоростного резания.

При токарной обработке с заготовки за определенное число проходов снимается лишний металл, называемый припуском. В результате получается изделие заданной формы с требуемыми размерами и классом шероховатости поверхностей. В общем виде операция точения детали на токарном станке выглядит следующим образом: резец последовательно перемещается с заданной подачей вглубь металла вращающейся заготовки, при этом его режущая кромка за каждый оборот удаляет с заготовки заданную толщину металла.

Режимы резания при токарной обработке определяют на основании ряда технических показателей, среди которых самые значимые - это подача инструмента и частота вращения детали, закрепленной в шпинделе станка. Правильный выбор и применение режимов обработки гарантируют не только геометрическую точность и экономичность изготовления, но и сохранность детали, инструмента и оборудования, а также безопасность станочника.

Основные параметры

Одна из главных задач технологической подготовки производства при токарных работах - это определение рациональных режимов резания. При их расчете должны учитываться особенности обрабатываемого изделия и возможности станочного парка, а также наличие соответствующего инструмента, приспособлений и оснастки. Компоновка узлов и агрегатов токарного станка позволяет реализовать два определяющих вида движения, которые формируют заданную конфигурацию поверхностей детали: вращение заготовки (главное движение) и перемещение резца вглубь и вдоль поверхности детали (подача). Поэтому основными технологическими параметрами для токарного оборудования являются:

  • глубина резания;
  • подача и обороты шпинделя;
  • скорость резания.

Существует взаимовлияние режимов резания и основных элементов производственной экономики. Среди них самые значимые - это:

  • производительность оборудования;
  • качественные показатели производства;
  • стоимость выпускаемых изделий;
  • износ оборудования;
  • стойкость инструмента;
  • безопасность труда.

Точение на предельных режимах повышает производительность токарного оборудования. Однако такая работа станков не всегда возможна и целесообразна, т.к. существуют ограничения в виде предельной мощности главного привода, жесткости и прочности обрабатываемых изделий, а также технологических параметров инструмента и оснастки.

Еще одним ограничением являются характеристики отдельных материалов. К примеру, титан и нержавеющая сталь для токарной обработки являются одними из наиболее сложных материалов и требуют особого подхода при определении параметров технологической операции.

При неправильном расчете или подборе технологических параметров работа на высоких скоростях может вызвать повышенную вибрацию и разбалансировку отдельных механизмов токарного станка. Это приводит к понижению точности и повторяемости размеров изделий. Кроме этого повышается риск поломки инструмента и выхода из строя станка.

Глубина

Припуск — это толщина металла, удаляемого токарным резцом с заготовки до достижения ею чистового размера. При обточке и расточке он удаляется поэтапно за заданное число резов. Толщина металла, удаляемого за единичный проход резца, в механообработке носит название глубина резания и измеряется в миллиметрах. В технологических расчетах и таблицах этот параметр обозначают буквой t.

При операциях обточки она равна 1/2 разности диаметров перед и после обточки детали и вычисляется по формуле:

где t – глубина резания; D — диаметр заготовки; d – заданный диаметр детали.

При операциях подрезки - это размер слоя металла, удаляемого с торца заготовки за единичный проход резца, а при проточке и отрезке - глубина канавки.

В идеальном случае на удаление припуска требуется один проход резца. Но в реальности токарный процесс, как правило, включает в себя черновой и чистовой этап обработки (а для поверхностей с повышенной точностью – и получистовой). При хороших характеристиках и форме заготовки обе эти операции выполняются за два-три прохода.

Подача

Подача при токарной обработке - это длина пути при поперечном перемещении режущей кромки резца, совершаемом ей за единичный оборот шпинделя. Ее измеряют в мм/об, в технологической документации обозначают буквой S и подбирают по технологическим справочникам. Величина подачи зависит от мощности главного привода, значения t, габаритов и физических свойств обрабатываемой заготовки. При точении она рассчитывается по формуле:

S=(0,05…0,25) ×t,

Производительность токарного оборудования напрямую связана с величиной подачи.

При операции точения подача на токарном станке должна устанавливаться на максимально возможное число, но с учетом технологических параметров станка и применяемого инструмента. При операциях по черновому точению она зависит от мощности главного привода и устойчивости детали. А при чистовом точении основным критерием является заданный класс шероховатость поверхности.

Скорость

Скорость резания при токарной обработке - это суммарная траектория режущей кромки резца за единицу времени. Ее размерность - в м/мин, а в таблицах и расчетах ее обозначают буквой v и подбирают по технологической документации или рассчитывают по формулам. В последнем случае расчет происходит в следующей последовательности:

  • вычисляется величина t;
  • по справочнику выбирается значение S;
  • определяется табличное значение vт;
  • рассчитывается уточненное значение vут (умножением на корректирующие коэффициенты);
  • с учетом скорости вращения шпинделя выбирается фактическое значение vф.

Этот параметр является одной из основных характеристик производительности металлорежущего оборудования и напрямую влияет на эксплуатационные режимы работы токарного станка, износ инструмента и качество обрабатываемой поверхности.

Выбор режима на практике

Расчет режимов резания при токарной обработке производится специалистами отдела главного технолога предприятия или технологического бюро цеха. Полученные результаты заносят в операционную карту, в которой приводится последовательность этапов, перечень инструмента и режимы изготовления требуемой детали на конкретном токарном станке. Заводские и цеховые технологи рассчитывают параметры технологического процесса и выбирают соответствующие инструмент и оснастку, используя конструкторские чертежи, эмпирические формулы и табличные показатели из технологических справочников. Но на практике реальные условия точения могут отличаться от нормативных по следующим причинам:

  • снижение точности оборудования в результате износа;
  • отклонения в геометрических размерах и физических характеристиках заготовки.
  • несоответствие характеристик материала расчетным.

Поэтому для уточнения расчетных технологических режимов применяют метод пробных проходов: точение небольших участков поверхности с подбором режимов и последующим замером геометрии и качества поверхности. Главные недостатки такой отладки технологического процесса - это возрастание трудозатрат и сверхнормативное использование производственных ресурсов. Поэтому его используют только в особых случаях:

  • единичное изготовление без операционной карты;
  • определение точности работы токарного оборудования перед запуском партии;
  • работа с неполноценными заготовками (брак и неточность размеров);
  • обточка литейных и кованых заготовок, не прошедших предварительную обдирку;
  • запуск в производство изделий из новых материалов.

При первом запуске в производство нового изделия, обрабатываемого на автоматизированном оборудовании, также производят пробное точение и подбирают вручную режимы резания. Токарный станок с ЧПУ выполняет все операции по программе, поэтому оператор не всегда может корректировать параметры его работы.

Кроме углеродистых сталей на токарном оборудовании обрабатывают такие металлы как легированная сталь, чугун, титан, сплавы алюминия, бронза и другие сплавы меди. Помимо этого, такую обработку используют для точения материалов с низкой температурой плавления и воспламенения, таких как пластики и дерево. При работе с пластмассами токарные станки чаще всего применяют при обработке деталей из фоторопласта, полистирола, полиуретана, оргстекла, текстолита, а также эпоксидных и карбомидовых композитов. Все перечисленные группы материалов имеют свои особенности расчета и практического применения режимов точения. Это хорошо видно на примере токарной обработки нержавейки - самого распространенного после углеродистой стали конструкционного материала.

Нержавеющая сталь характеризуется низкой теплопроводностью, вязкостью, коррозионной стойкостью, сохранением прочности и твердости при высоких температурах, а также неравномерным упрочнением. Кроме того, в состав некоторых сортов нержавеющей стали входят легирующие добавки повышенной твердости с абразивными характеристиками. Поэтому при работе с ней на практике применяют специальные режимы точения и методы охлаждения и смазки детали.

Обработка нержавейки ведется на повышенных оборотах при уменьшенной подаче. Высокая вязкость этого материала способствует созданию непрерывной вьющейся стружки.

Для решения этой проблемы применяют резцы со стружколомом. Для отвода тепла и смазки обрабатываемой поверхности в рабочую зону подается специальная СОЖ (смазочно-охлаждающей жидкости) на основе олеиновой кислоты. Это уменьшает нагрев заготовки и снижает износ резца. В последнее время все чаще применяют современные методы, которые также уменьшают износ инструмента: направление в рабочую зону ультразвуковых волн и подвод к металлу слаботочных импульсов.

Вычисление скорости резания

Время точения металла (tосн, основное время) - самая затратная составляющая в суммарном времени изготовления единичного изделия. Поэтому от скорости выполнения этой технологической операции напрямую зависит экономическая эффективность использования токарного оборудования. Правильный расчет скорости резания при токарной обработке важен не только с точки зрения стоимостных показателей производственной операции. Ошибки в расчете и применении этого параметра может привести не только к браку детали, но и к повреждению токарного оборудования, оснастки и инструмента. Далее приводится последовательность расчета этого показателя для самой распространенной операции - обточки цилиндрической поверхности.

Скорость резания v имеет размерность м/мин и в общем виде вычисляется по формуле:

v = π×D×n/1000,

где D - диаметр заготовки в мм; n - скорость шпинделя в об/мин.

Но на токарном оборудовании невозможно количественно задать v в качестве параметра управления. При работе на токарных станках предусмотрена регулировка только оборотов шпинделя и подачи инструмента, которые зависит не только от значения v, но и от ряда других факторов: материала детали, мощности главного привода, вида точения и характеристик режущего инструмента. Поэтому при расчете режимов в первую очередь определяют расчетные обороты шпинделя:

n = 1000×v/π×D.

На основании полученного результата по таблицам справочной литературе выбирают соответствующее значение v, которое зависит глубины точения, подачи, материала, типа резца и вида операции.

Для расчета теоретической глубины резания t на основании чертежа определяют размерные характеристики детали и заготовки, а затем с учетом геометрических параметров инструмента вычисляют ее по формуле:

где D — диаметр заготовки; d – конечный диаметр детали.

После вычисления величины t по справочникам определяют табличное значение подачи S в мм/об. В справочных таблицах учтены: вид материала (различные стали, бронза, чугун, титан, алюминиевые сплавы), тип точения (черновое, чистовое), параметры резца и геометрия его подхода к обрабатываемой поверхности. Затем по технологическим таблицам на основании полученных величин t и S определяют vτ - табличное значение скорости резания.

Далее vτ должна быть скорректирована в соответствии с реальными условиями точения, к которым относят: период стойкости и технические параметры резца, прочностные характеристики материала, физическое состояние обрабатываемых поверхностей, геометрия резания.

Корректировка vт осуществляется с помощью группы поправочных коэффициентов:

v ут = v т ×К1×К2×К3×К4×К5,

где v ут — уточненная скорость резания; K1 — коэффициент, зависящий от времени работы резца; K2, K4 — коэффициенты, зависящие от технических параметров резца; K3 — коэффициент, зависящий от состояния обрабатываемой поверхности; K4 — коэффициент, зависящий от материала резца; K5 — коэффициент, зависящий от геометрии обработки.

После расчета vут вычисляют уточненную скорость вращения шпинделя nут по следующей формуле:

n ут = 1000×vут/π×D.

Значение nут должно лежать в диапазоне паспортных скоростей главного привода станка, которые приведены в заводской документации токарного оборудования. Если полученная в результате расчетов nут не имеет точного соответствия в таблицах станка, то необходимо применить ближайшее самое меньшее число.

На последнем этапе рассчитывают фактическую скорость резания v ф:

v ф = π×D×n ут /1000.

V ф напрямую связана с мощностью главного двигателя станка. Поэтому она является основным параметром при выборе конкретного типа токарного станка для обработки требуемой детали.

Точение – один из многофункциональных методов обработки деталей разного типа. Он используется для чистовой и черновой работы с изделиями в процессе выполнения их ремонта или изготовления. Внимательный подход к подбору режимов резанья обеспечивает существенное повышение продуктивности данного процесса.

Что это такое

Под режимом резания чаще всего подразумевают характеристики, которые находят расчетным путем. Это глубина, скорость и подача. Данные величины являются очень важными. Без них качественно выточить любую деталь просто невозможно.

При расчете режимов работы учитывают и другие характеристики производимых рабочих манипуляций:

  • допустимые припуски;
  • вес заготовок;
  • частота вращения шпинделя станка.

При необходимости учитываются много других характеристик тех элементов, которые влияют на процесс обработки деталей.

Характеристика режимов работы

Расчет операции резания выполняется с использованием специальных справочных и нормативных документов, которых на данный момент существует немало. Необходимо тщательно изучить представленные таблицы и выбрать в них подходящие значения. Правильно выполненный расчет гарантирует высокую эффективность применяемого режима обработки детали и обеспечивает достижение лучшего результата.

Но такой метод расчета является не всегда удачным, особенно в условиях производства, когда нецелесообразно тратить много времени на изучение таблиц с огромным числом значений. Установлено, что все величины режимов резания взаимосвязаны между собой. Если изменить одно значение, закономерно, что все остальные характеристики обработки станут иными.

Поэтому очень часто специалисты предпочитают применять расчетную или аналитическую методику определения режимов резания. Используются специальные эмпирические формулы, при помощи которых определяются все необходимые нормы. Чтобы расчеты по данной методике были абсолютно точными, необходимо знать следующие параметры токарного станка:

  • частота вращения шпинделя;
  • величины подач;
  • мощность.

На современных производствах для выполнения подобных расчетов используют специальное программное обеспечение. Специалисту достаточно ввести известные данные, после чего компьютер выдаст вычисляемые величины. Применение программ для расчетов существенно облегчает работу специалистов и делает производство более эффективным.

Схема расчетов

Перед выполнением расчетов операции резания необходимо определить, какой тип режущего инструмента будет использоваться в данном случае. При токарной или абразивной обработке хрупких материалов выбирают оснащение с минимальными показателями. Следует не забывать, что во время работы деталь обычно довольно сильно нагревается. Если скорость обработки будет очень высокая, она может деформироваться, что приведет к ее непригодности.

Обязательно учитывается, какая обработка будет осуществляться – чистовая или черновая. В первом случае подбирают рабочие параметры, которые обеспечат максимальную точность. Специалисты обращают внимание и на толщину срезаемого слоя. В зависимости от данной характеристики выбирается количество проходок для выполнения обрезки на специальном оборудовании.

Глубина

Глубина является одним из важнейших параметров для обеспечения качества изготовленных заготовок. Она определяет толщину срезаемого слоя за одну проходку. При выполнении подрезки торца за глубину принимают диаметр детали.

Учитывается количество проходов, что определяется припусками на обработку:

Изменение обрабатываемого диаметра

  • 60% на черновую;
  • 20–30% на получистовую;
  • 10–20% на чистовую.

Для определения глубины обрезки цилиндрических заготовок используется следующая формула:

k=(D-d)/2 , где к – глубина обрезки, D – первоначальный диаметр, d – получаемый диаметр.

При определении режимов резания при работе с плоскими деталями вместо диаметров используют длину. Принято считать, что при черновой обработке глубина должна составлять больше 2 мм, получистовой – 1–2 мм, чистовой – меньше 1 мм. Данный параметр зависит от требований к качеству деталей. Чем меньше класс точности, тем больше проходов необходимо выполнить для достижения необходимых свойств изделий.

Подача

Под подачей подразумевают величину перемещения резца за один оборот заготовки. При выполнении черновой обработки данный параметр может иметь максимально возможные значения. На завершительном этапе работ значение подачи определяется с учетом квалитета шероховатости. Данная характеристика зависит от глубины обрезки и габаритов заготовки. Чем меньше размеры, тем она ниже. При большой толщине срезаемого слоя выбираются минимальные параметры подачи.

Чтобы облегчить работу специалистам, разработаны специальные таблицы. Там указаны значения подачи при разных условиях режима резанья. Для выполнения точных расчетов иногда необходимо знать размер державки резца.

Если резанье выполняется с существенными ударными нагрузками, значения с таблицы необходимо умножать на коэффициент 0,85. При работе с жаропрочной конструкционной сталью подача не должна быть больше 1 мм/об.

Скорость

Скорость резания – это один из важнейших показателей, который определяется на этапе расчетов перед выполнением основных работ. Ее значения зависят от проводимых операций. Обычно отрезание торцов происходит при максимально возможной скорости. Сверление или точение имеют совсем иные требования к данному рабочему параметру. Поэтому для качественного выполнения поставленных задач необходимо знать следующее:

  • тип выполняемой слесарной операции;
  • вид применяемого токарного инструмента;
  • материал, из которого изготовлена заготовка.

При традиционной токарной обработке скорость определяется путем умножения диаметра заготовки на количество ее оборотов за минуту и на π. Полученное значение необходимо разделить на 1000. Также скорость резанья можно определить, используя стандартные таблицы для режимов резанья.

Проверка выбранных рабочих характеристик

Когда глубина, подача и скорость определены, их необходимо проверить. Полученные рабочие параметры не должны быть больше нормативных значений, которые указаны в паспорте эксплуатируемого токарного станка.

Обязательно необходимо определить мощность оборудования. Для этого силу обрезки умножают на ее скорость и делят на 1000. Полученное значение сравнивают с тем, что указано в паспорте станка. Если рассчитанные по формулам параметры больше, необходимо корректировать глубину, подачу и скорость, чтобы избежать повреждения оборудования и инструментов.

Какой режущий инструмент использовать

Изготовление деталей на подобных станках осуществляется при помощи специальных токарных резцов. Они должны обеспечивать следующее:

  • качественную обработку деталей с получением нужной формы и размеров;
  • достижение высокого качества обрабатываемой поверхности;
  • высокую производительность при минимальных энергетических затратах;
  • технологичность в изготовлении;
  • ремонтоспособность;
  • минимальный расход дорогих материалов для их изготовления.

Токарные резцы классифицируют по разным параметрам. По виду производимых работ они могут быть отрезными, проходными, фасонными, подрезными и т. д. Резцы изготовляются из различных материалов – алмазов, вольфрама, титан-вольфрама и других. В зависимости от конструктивного исполнения данные инструменты бывают цельными, сборными и комбинированными.

Выбор конкретного типа инструмента осуществляется с учетом режимов проводимых рабочих операций, твердости заготовки, геометрических параметров режущей части и других характеристик.