Как определяется число электронов. От чего зависит и что обозначает число электронов в атоме? Изотопы и число протонов

  • Ассоциативные примеры процесса эзоосмоса, передачи и распределения энергии и информации
  • Состав ядра атома. Расчет протонов и нейтронов
  • Формулы реакций, лежащие в основе управляемого термоядерного синтеза
  • Состав ядра атома. Расчет протонов и нейтронов


    Согласно современным представлениям, атом состоит из ядра и расположенных вокруг него электронов. Ядро атома, в свою очередь, состоит из более малых элементарных частиц ‒ из определенного количества протонов и нейтронов (общепринятое название для которых – нуклоны), связанных между собой ядерными силами.

    Количество протонов в ядре определяет строение электронной оболочки атома. А электронная оболочка определяет физико-химические свойства вещества. Число протонов соответствует порядковому номеру атома в периодической системе химических элементов Менделеева, именуется также зарядовое число, атомный номер, атомное число. Например, число протонов у атома Гелия – 2. В периодической таблице он стоит под номером 2 и обозначается как He 2 Символом для обозначения количества протонов служит латинская буква Z. При записи формул зачастую цифра, указывающая на количество протонов, располагается снизу от символа элемента либо справа, либо слева: He 2 / 2 He.

    Количество нейтронов соответствует определённому изотопу того или иного элемента. Изотопы – это элементы с одинаковым атомным номером (одинаковым количеством протонов и электронов), но с разным массовым числом. Массовое число – общее количество нейтронов и протонов в ядре атома (обозначается латинской буквой А). При записи формул массовое число указывается вверху символа элемента с одной из сторон: He 4 2 / 4 2 He (Изотоп Гелия – Гелий - 4)

    Таким образом, чтобы узнать число нейтронов в том или ином изотопе, следует от общего массового числа отнять число протонов. Например, нам известно, что в атоме Гелия-4 He 4 2 cодержится 4 элементарные частицы, так как массовое число изотопа – 4 . При этом нам известно, что He 4 2 меет 2 протона. Отняв от 4 (общее массовое число) 2 (кол-во протонов) получаем 2 – количество нейтронов в ядре Гелия-4.

    ПРОЦЕСС РАСЧЁТА КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО В ЯДРЕ АТОМА. В качестве примера мы не случайно рассмотрели Гелий-4 (He 4 2), ядро которого состоит из двух протонов и двух нейтронов. Поскольку ядро Гелия-4, именуемое альфа-частицей (α-частица) обладает наибольшей эффективностью в ядерных реакциях, его часто используют для экспериментов в этом направлении. Стоит отметить, что в формулах ядерных реакций зачастую вместо He 4 2 используется символ α.

    Именно с участием альфа-частиц была проведена Э. Резерфордом первая в официальной истории физики реакция ядерного превращения. В ходе реакции α-частицами (He 4 2) «бомбардировались» ядра изотопа азота (N 14 7), вследствие чего образовался изотоп оксигена (O 17 8) и один протон (p 1 1)

    Данная ядерная реакция выглядит следующим образом:

    Осуществим расчёт количества фантомных частичек По до и после данного преобразования.

    ДЛЯ РАСЧЁТА КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО НЕОБХОДИМО:
    Шаг 1. Посчитать количество нейтронов и протонов в каждом ядре:
    - количество протонов указано в нижнем показателе;
    - количество нейтронов узнаем, отняв от общего массового числа (верхний показатель) количество протонов (нижний показатель).

    Шаг 2. Посчитать количество фантомных частичек По в атомном ядре:
    - умножить количество протонов на количество фантомных частичек По, содержащихся в 1 протоне;
    - умножить количество нейтронов на количество фантомных частичек По, содержащихся в 1 нейтроне;

    Шаг 3. Сложить количество фантомных частичек По:
    - сложить полученное количество фантомных частичек По в протонах с полученным количеством в нейтронах в ядрах до реакции;
    - сложить полученное количество фантомных частичек По в протонах с полученным количеством в нейтронах в ядрах после реакции;
    - сравнить количество фантомных частичек По до реакции с количеством фантомных частичек По после реакции.

    ПРИМЕР РАЗВЁРНУТОГО ВЫЧИСЛЕНИЯ КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО В ЯДРАХ АТОМОВ.
    (Ядерная реакция с участием α-частицы (He 4 2), провёденная Э. Резерфордом в 1919 году)

    ДО РЕАКЦИИ (N 14 7 + He 4 2)
    N 14 7

    Количество протонов: 7
    Количество нейтронов: 14-7 = 7
    в 1 протоне – 12 По, значит в 7 протонах: (12 х 7) = 84;
    в 1 нейтроне – 33 По, значит в 7 нейтронах: (33 х 7) = 231;
    Общее количество фантомных частичек По в ядре: 84+231 = 315

    He 4 2
    Количество протонов – 2
    Количество нейтронов 4-2 = 2
    Количество фантомных частичек По:
    в 1 протоне – 12 По, значит в 2 протонах: (12 х 2) = 24
    в 1 нейтроне – 33 По, значит в 2 нейтронах: (33 х 2) = 66
    Общее количество фантомных частичек По в ядре: 24+66 = 90

    Итого, количество фантомных частичек По до реакции

    N 14 7 + He 4 2
    315 + 90 = 405

    ПОСЛЕ РЕАКЦИИ (O 17 8) и один протон (p 1 1):
    O 17 8
    Количество протонов: 8
    Количество нейтронов: 17-8 = 9
    Количество фантомных частичек По:
    в 1 протоне – 12 По, значит в 8 протонах: (12 х 8) = 96
    в 1 нейтроне – 33 По, значит в 9 нейтронах: (9 х 33) = 297
    Общее количество фантомных частичек По в ядре: 96+297 = 393

    p 1 1
    Количество протонов: 1
    Количество нейтронов: 1-1=0
    Количество фантомных частичек По:
    В 1 протоне – 12 По
    Нейтроны отсутствуют.
    Общее количество фантомных частичек По в ядре: 12

    Итого, количество фантомных частичек По после реакции
    (O 17 8 + p 1 1):
    393 + 12 = 405

    Сравним количество фантомных частичек По до и после реакции:


    ПРИМЕР СОКРАЩЁННОЙ ФОРМЫ ВЫЧИСЛЕНИЯ КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО В ЯДЕРНОЙ РЕАКЦИИ.

    Известной ядерной реакцией является реакция взаимодействия α-частиц с изотопом бериллия, прикоторой впервые был обнаружен нейтрон, проявивший себя как самостоятельная частица в результате ядерного преобразования. Данная реакция была осуществлена в 1932 году английским физиком Джеймсом Чедвиком. Формула реакции:

    213 + 90 → 270 + 33 - количество фантомных частичек По в каждом из ядер

    303 = 303 - общая сумма фантомных частичек По до и после реакции

    Количества фантомных частичек По до и после реакции равны.

    Инструкция

    Если атом электронейтрален, то число электронов в нем равно числу протонов. Число протонов соответствует атомному элемента в таблице Менделеева. Например, имеет первый атомный номер, поэтому его атом имеет один . Атомный номер натрия - 11, поэтому атом натрия имеет 11 электронов.

    Атом также может терять или присоединять . В этом случае атом становится ионом, имеющим электрический положительный или . Допустим, один из электронов натрия покинул электронную оболочку атома. Тогда атом натрия станет положительно заряженным ионом, имеющим заряд +1 и 10 электронов на своей электронной оболочки. При присоединении электронов атом становится отрицательным ионом.

    Атомы химических элементов могут также соединяться в молекулы, наименьшую частицу вещества. Количество электронов в молекуле равно количеству электронов всех входящих в нее атомов. Например, молекула воды H2O состоит из двух атомов водорода, каждый из которых имеет по одному электрону, и атома кислорода, который имеет 8 электронов. То есть, в молекуле воды всего 10 электронов.

    Атом химического элемента состоит из атомного ядра и электронной оболочки. В состав атомного ядра входят два типа частиц - протоны и нейтроны. Почти вся масса атома сосредоточена в ядре, потому что протоны и нейтроны намного тяжелее электронов.

    Вам понадобится

    • атомный номер элемента, N-Z диаграмма.

    Инструкция

    Нейтроны не имеют электрического заряда, то есть их электрический заряд равен нулю. Это и представляет основную сложность при числа нейтронов - атомный номер элемента или его электронная оболочка не дают однозначного ответа на этот вопрос. Например, в ядре всегда содержится 6 протонов, однако протонов в нем может быть 6 и 7. Разновидности ядер элемента с разным количеством нейтронов в ядре изотопами этого элемента. Изотопы могут быть природными, а могут быть и получены .

    Ядра атомов обозначают буквенным символом химического элемента из таблицы Менделеева. Справа от символа вверху и внизу стоят два числа. Верхнее число A - это массовое число атома. A = Z+N, где Z - заряд ядра (число протонов), а N - число нейтронов. Нижнее число - это Z - заряд ядра. Такая запись дает информацию о количестве нейтронов в ядре. Очевидно, что оно равно N = A-Z.

    У разных изотопов одного химического элемента число A меняется, что можно увидеть в записи этого изотопа. Определенные изотопы имеют свои оригинальные названия. Например, обычное ядро водорода не имеет нейтронов и имеет один протон. Изотоп водорода дейтерий имеет один нейтрон (A = 2, цифра 2 сверху, 1 снизу), а изотоп тритий - два нейтрона (A = 3, цифра 3 сверху, 1 снизу).

    Зависимость числа нейтронов от числа протонов отражена на так называемой N-Z диаграмме атомных ядер. Устойчивость ядер зависит от отношения числа нейтронов и числа протонов. Ядра легких нуклидов наиболее устойчивы при N/Z = 1, то есть при равенстве количества нейтронов и протонов. С ростом массового числа область устойчивости сдвигается к величинам N/Z>1, достигая величины N/Z ~ 1,5 для наиболее тяжелых ядер.

    Видео по теме

    Источники:

    • Строение атомного ядра
    • как найти количество нейтронов

    Атом состоит из ядра и окружающих его электронов, которые вращаются вокруг него по атомным орбиталям и образуют электронные слои (энергетические уровни). Количество отрицательно заряженных частиц на внешних и внутренних уровнях определяет свойства элементов. Число электронов, содержащихся в атоме, можно найти, зная некоторые ключевые моменты.

    Вам понадобится

    • - бумага;
    • - ручка;
    • - периодическая система Менделеева.

    Инструкция

    Чтобы определить количество электронов, воспользуйтесь периодической системой Д.И. Менделеева. В этой таблице элементы расположены в определенной последовательности, которая тесно связана с их атомным строением. Зная, что положительный всегда равен порядковому номеру элемента, вы легко найдете количество отрицательных частиц. Ведь известно - атом в целом нейтрален, а значит, число электронов будет равно числу и номеру элемента в таблице. Например, равен 13. Следовательно, количество электронов у него будет 13, у натрия – 11, у железа – 26 и т.д.

    Если вам необходимо найти количество электронов на энергетических уровнях, сначала повторите принцип Пауля и правило Хунда. Потом распределите отрицательные частицы по уровням и подуровням с помощью все той же периодической системы, а точнее ее периодов и групп. Так номер горизонтального ряда (периода) указывает на количество энергетических слоев, а вертикального (группы) – на число электронов на внешнем уровне.

    Не забывайте о том, что количество внешних электронов равно номеру группы только у элементов, которые находятся в главных подгруппах. У элементов побочных подгрупп количество отрицательно заряженных частиц на последнем энергетическом уровне не может быть больше двух. Например, у скандия (Sc), находящегося в 4 периоде, в 3 группе, побочной подгруппе, их 2. В то время как у галия (Ga), который находится в том же периоде и той же группе, но в главной подгруппе, внешних электронов 3.

    При подсчете электронов в атоме , учтите, что последние образуют молекулы. При этом атомы могут принимать, отдавать отрицательно заряженные частицы или образовывать общую пару. Например, в молекуле водорода (H2) общая пара электронов. Другой случай: в молекуле фторида натрия (NaF) общая сумма электронов будет равна 20. Но в ходе химической реакции атом натрия отдает свой электрон и у него остается 10, а фтор принимает - получается тоже 10.

    Полезный совет

    Помните, что на внешнем энергетическом уровне может быть только 8 электронов. И это не зависит от положения элемента в таблице Менделеева.

    Источники:

    • a так как атом то номер элемента

    Атомы состоят из субатомных частиц - протонов, нейтронов и электронов. Протоны представляют собой положительно заряженные частицы, которые находятся в центре атома, в его ядре. Вычислить число протонов изотопа можно по атомному номеру соответствующего химического элемента.

    Модель атома

    Для описания свойств атома и его структуры используется модель, известная под названием «Модель атома по Бору». В соответствии с ней структура атома напоминает солнечную систему - тяжелый центр (ядро) находится в центре, а более легкие частицы движутся по орбите вокруг него. Нейтроны и протоны образуют положительно заряженное ядро, а отрицательно заряженные электроны движутся вокруг центра, притягиваясь к нему электростатическими силами.

    Элементом называют вещество, состоящее из атомов одного типа, он определяется числом протонов в каждом из них. Элементу присваивают свое имя и символ, например, водород (H) или кислород (О). Химические свойства элемента зависят от числа электронов и, соответственно, числа протонов, содержащихся в атомах. Химические характеристики атома не зависят от числа нейтронов, так как не имеют электрического заряда. Однако их число влияет на стабильность ядра, изменяя общую массу атома.

    Изотопы и число протонов

    Изотопами называют атомы отдельных элементов с различным числом нейтронов. Данные атомы химически идентичным, однако обладают разной массой, также они отличаются своей способностью испускать излучение.

    Атомный номер (Z) - это порядковый номер химического элемента в периодической системе Менделеева, он определяется числом протонов в ядре. Каждый атом характеризуется атомным номером и массовым числом (А), которое равно суммарному числу протонов и нейтронов в ядре.

    Элемент может иметь атомы с различным числом нейтронов, но количество протонов остается неизменным и равно числу электронов нейтрального атома. Для того, чтобы определить, сколько протонов содержится в ядре изотопа, достаточно посмотреть на его атомный номер. Число протонов равно номеру соответствующего химического элемента в периодической таблице Менделеева.

    • Радиация, Введение в радиационную защиту

    Фанатичным математикам, обожающим подсчитывать всё на свете, давно хотелось узнать ответ на фундаментальный вопрос: сколько всего частиц во Вселенной? Учитывая, что приблизительно 5 триллионов атомов водорода могут поместиться на одной лишь головке булавки, при этом каждый из них состоит из 4 элементарных частиц (1 электрон и 3 кварка в протоне), можно с уверенностью предположить, что число частиц в наблюдаемой Вселенной находится за гранью человеческого представления.

    Как бы то ни было, профессор физики Тони Падилла из Нотингемского университета разработал способ оценки общего количества частиц во Вселенной, не принимая в расчет фотоны или нейтрино, поскольку у них отсутствует (вернее, практически отсутствует) масса:

    Для своих расчетов ученый использовал данные, полученные с помощью телескопа Планка, которые использовались для измерения реликтового излучения, являющегося самым старым из видимого светового излучения во Вселенной и, таким образом, формирующего подобие ее границы. Благодаря телескопу, ученые смогли оценить плотность и радиус видимой Вселенной.

    Другая необходимая переменная — это доля вещества, содержащаяся в барионах. Эти частицы состоят из трех кварков, и наиболее известными барионами на сегодняшний день являются протоны и нейтроны, а потому в своем примере Падилла рассматривает именно их. Наконец, для расчета необходимо знание масс протона и нейтрона (которые примерно совпадают друг с другом), после чего можно приступать к вычислениям.

    Что делает физик? Он берет плотность видимой Вселенной, умножает ее на долю плотности одних лишь барионов, а затем умножает результат на объем Вселенной. Получившуюся в результате массу всех барионов во Вселенной он делит на массу одного бариона и получает общее количество барионов. Но барионы нам не интересны, наша цель — элементарные частицы.

    Известно, что каждый барион состоит из трех кварков — как раз они-то нам и нужны. Более того, общее число протонов (как все мы знаем из школьного курса химии) равно общему числу электронов, которые тоже являются элементарными частицами. Помимо этого, астрономы установили, что 75% вещества во Вселенной представлено водородом, а оставшиеся 25% - гелием, прочими же элементами при расчетах такого масштаба можно пренебречь. Падилла вычисляет количество нейтронов, протонов и электронов, после чего умножает две первые позиции на три — и у нас наконец есть итоговый результат.

    3.28х10 80 . Более трех вигинтиллионов.

    328.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.

    Самое интересное, что, с учетом масштаба Вселенной, эти частицы не заполняют даже большую часть от ее общего объема. В результате, на один кубометр Вселенной приходится лишь одна (!) элементарная частица.

    Атом химического элемента состоит из ядра и электронов . Количество электронов в атоме зависит от его атомного номера. Электронная конфигурация определяет распределение электрона по оболочкам и подоболочкам.

    Вам понадобится

    • Атомный номер, состав молекулы

    Инструкция

    Если атом электронейтрален, то число электронов в нем равно числу протонов. Число протонов соответствует атомному номеру элемента в таблице Менделеева. Например, водород имеет первый атомный номер, поэтому его атом имеет один электрон. Атомный номер натрия - 11, поэтому атом натрия имеет 11 электронов .

    Атом также может терять или присоединять электроны. В этом случае атом становится ионом, имеющим электрический положительный или отрицательный заряд. Допустим, один из электронов натрия покинул электронную оболочку атома. Тогда атом натрия станет положительно заряженным ионом, имеющим заряд +1 и 10 электронов на своей электронной оболочки. При присоединении электронов атом становится отрицательным ионом.

    Атомы химических элементов могут также соединяться в молекулы, наименьшую частицу вещества. Количество электронов в молекуле равно количеству электронов всех входящих в нее атомов. Например, молекула воды H2O состоит из двух атомов водорода, каждый из которых имеет по одному электрону, и атома кислорода, который имеет 8 электронов . То есть, в молекуле воды всего 10 электронов .

    Долгое время для исследователей оставались секретом многие свойства материи. Отчего одни вещества отлично проводят электричество, а другие - нет? Почему железо постепенно разрушается под воздействием атмосферы, а благородные металлы отлично сохраняются на протяжении тысяч лет? Многие из этих вопросов нашли ответ после того, как человеку стало известно устройство атома: его строение, число электронов на каждом электронном слое. Более того, освоение даже самых основ строения атомных ядер открыло миру новую эру.

    Из каких элементов построен элементарный кирпичик вещества, как они взаимодействуют между собой, чем из этого мы научись пользоваться?

    в представлении современной науки

    В настоящее время большинство ученых склонны придерживаться планетарной модели строения материи. Согласно этой модели в центре каждого атома находится ядро, крохотное даже по сравнению с атомом (он в десятки тысяч раз мельче целого атома). Зато о массе ядра такого не скажешь. Практически вся масса атома сосредоточена именно в ядре. Ядро заряжено положительно.

    Вокруг ядра вращаются электроны по различным орбитам, не круговым, как в случае с планетами Солнечной системы, а объемным (сферы и объемные восьмерки). Число электронов в атоме численно равно заряду ядра. Но рассматривать электрон как частицу, которая движется по какой-то траектории, очень сложно.

    Его орбита крохотна, а скорость почти как у светового луча, поэтому правильнее рассматривать электрон вместе с его орбитой как некую отрицательно заряженную сферу.

    Члены атомной семьи

    Все атомы состоят из 3 составляющих элементов: протонов, электронов и нейтронов.

    Протон - главный строительный материал ядра. Его вес равен атомной единице (масса атома водорода) или 1,67 ∙ 10 -27 кг в системе СИ. Заряжена частица положительно, причем заряд ее принят за единицу в системе элементарных электрических зарядов.

    Нейтрон - близнец протона по массе, но никак не заряжен.

    Две вышеперечисленные частицы называют нуклидами.

    Электрон - противоположность протону по заряду (элементарный заряд равен −1). Но вот по весу электрон подкачал, масса его всего-то 9,12 ∙ 10 -31 кг, что почти в 2 тысячи раз легче протона или нейтрона.

    Как это «разглядели»

    Как можно было разглядеть строение атома, если даже самые современные технические средства не позволяют и в ближайшей перспективе не позволят получить изображения составляющих его частиц. Как же ученые узнали число протонов, нейтронов и электронов в ядре и их расположение?

    Предположение о планетарном устройстве атомов было сделано на основе результатов бомбардировки тонкой металлической фольги различными частицами. На рисунке хорошо видно, как взаимодействуют с веществом различные элементарные частицы.

    Число электронов, прошедших сквозь металл, в опытах равнялось нулю. Это объясняется просто: отрицательно заряженные электроны отталкиваются от электронных оболочек металла, также имеющих отрицательный заряд.

    Пучок протонов (заряд +) проходил через фольгу, но с «потерями». Часть отталкивалась от попавшихся на пути ядер (вероятность таких попаданий очень незначительна), часть отклонялась от первоначальной траектории, пролетев слишком близко к одному из ядер.

    Самыми «результативными» в части преодоления металла стали нейтроны. Нейтрально заряженная частица терялась только в случае прямого столкновения с ядром вещества, 99,99% же нейтронов благополучно проходили сквозь толщу металла. Кстати, размер ядер тех или иных химических элементов удалось рассчитать именно исходя из количества нейтронов на входе и не выходе.

    На основе полученных данных и была построена доминирующая в настоящее время теория строения вещества, которая успешно объясняет большинство вопросов.

    Чего и сколько

    Число электронов в атоме зависит от порядкового номера. Так, в атоме обычного водорода имеется всего один протон. Вокруг же по орбите кружится единственный электрон. Следующий элемент периодической таблицы - гелий устроен чуточку сложнее. Его ядро состоит из двух протонов и двух нейтронов и имеет, таким образом, атомную массу 4.

    С ростом порядкового номера растут размеры и масса атома. Порядковый номер химического элемента в таблице Менделеева соответствует заряду ядра (количеству в нем протонов). Число электронов в атоме равно числу протонов. Так, атом свинца (порядковый номер 82) имеет в своем ядре 82 протона. На орбитах вокруг ядра находятся 82 электрона. Чтобы рассчитать количество нейтронов в ядре, достаточно от атомной массы отнять число протонов:

    Почему их всегда поровну

    Любая система в нашей Вселенной стремится к стабильности. Применительно к атому это выражается в его нейтральности. Если на секунду представить, что все без исключения атомы во Вселенной обладают тем или иным зарядом разной величины с разными знаками, можно себе представить, какой бы в мире наступил хаос.

    Но так как число протонов и электронов в атоме равно, итоговый заряд каждого «кирпичика» равен нулю.

    Число же нейтронов в атоме - величина самостоятельная. Более того, атомы одного и того же химического элемента могут иметь различное число этих частиц с нулевым зарядом. Пример:

    • 1 протон + 1 электрон + 0 нейтронов = водород (атомная масса 1);
    • 1 протон + 1 электрон + 1 нейтрон = дейтерий (атомная масса 2);
    • 1 протон + 1 электрон + 2 нейтрона = тритий (атомная масса 3).

    В данном случае число электронов в атоме не меняется, атом остается нейтральным, изменяется его масса. Такие вариации химических элементов принято называть изотопами.

    Всегда ли атом нейтрален

    Нет, не всегда число электронов в атоме равно числу протонов. Если бы у атома на время нельзя было «отобрать» электрон или два, не существовало бы такого понятия, как гальваника. На атом, как на любую материю, можно воздействовать.

    Под влиянием достаточно сильного электрического поля с наружного слоя атома один или несколько электронов могут «улететь». В этом случае частичка вещества перестает быть нейтральной и называется ионом. Она может передвигаться в среде газа или жидкости, перенося электрический заряд от одного электрода к другому. Таким образом запасают электрический заряд в аккумуляторных батареях, а также наносят тончайшие пленки из одних металлов на поверхности других (золочение, серебрение, хромирование, никелирование и т.д.).

    Нестабильно число электронов и в металлах - проводниках электрического тока. Электроны наружных слоев как бы гуляют с атома на атом, перенося по проводнику электрическую энергию.