Автоматизация процессов. Понятие и принципы автоматизации процессов производства

Автоматизация производственных

процессов

1.1. Основы, терминология и направления АПП.

Одним из основных направлений деятельности человека является совершенствование процессов производства с целью облегчения тяжёлого физического труда и повышение эффективности процесса в целом – это направление может реализоваться через автоматизацию производственных процессов.

Итак, целью АПП является:

- повышение производительности;

- повышение качества;

- улучшений условий труда.

Цель рождает вопросы, что и как автоматизировать, целесообразность и необходимость автоматизации и др. задачи.

Как известно технологический процесс состоит из трёх основных частей:

- рабочего цикла, - основной тех. процесс;

- холостых ходов, - вспомогательных операций;

- транспортно – накопительных операций.

Основной тех. процесс тесно связан с СПИД. Рассмотрим СПИД:

С – это автоматизация рабочих и холостых ходов всех механизмов станка (авт.гл. движ., подач и вспом. операций).

П – автоматизация установки, фиксации деталей на станке.И – требования АПП к инструменту.

Д – технологические требования АПП к детали. Кроме того,

Вспомогательных операций – это автоматизация загрузки, разгрузки, установки, ориентации, фиксации, транспортировки, накоплению и контролю детали. Из всего выше сказанного видно, что АПП имеет комплексный подход и, не

решив одну задачу, можем не достигнуть необходимого эффекта. Автоматизация – направление развития производства, характеризуемое ос-

вобождением человека не только от мускульных усилий, для выполнения тех или иных движений, но и от оперативного управления механизмами выполняющими эти движения.

Автоматизация может быть частичной или полной.

Частичная автоматизация – автоматизация части операции по управлению производственным процессом при условии, что остальная часть всех операций выполняется автоматически (управление и контроль человеком).

Примером может служить – автом. линия (АЛ), состоящая из нескольких станков автоматов и имеющих автоматическую межоперационную транспортную систему. Управление линии осуществляется одним процессором.

Полная автоматизация – характеризуется автоматическим выполнением всех функций для осуществления производственного процесса без непосредственного вмешательства человека в работу оборудования. В обязанности человека входят настройка машины или группы машин, включение и контроль.

Пример: автоматический участок или цех.

1.2. Организационно – технические особенности автоматизации.

Анализируя тенденцию и историю развития автоматизации произв. процессов, можно отметить четыре основных этапа, на которых решались различные по своей сложности задачи.

Это: 1. Автоматизация рабочего цикла создание машин автоматов и полуавтоматов.

2. Автоматизация систем машин, создание АЛ, комплексов и модулей.

3. Комплексы автоматизации производ. процессов с созданием автоматических цехов и заводов.

4. Создание гибкого автоматизированного производства с автоматизацией серийного и мелкосерийного производства, инженерного и управленческого труда.

1 На первом этапе – модернизировалось универсальное оборудование. Как известно время обработки одного изделия опр-ся по формуле:

T = t Р + tХ

Таким образом, для повышения производительности работы оборудования сокращалось время tР и tХ и совмещалось tР и tХ значит, если машина кроме рабочих ходов (tР ) могут самостоятельно выполнять холостые хода (tХ ), то она представляет собой автомат.

Необходимо учитывать, что под холостыми ходами следует понимать не только перемещение отдельных узлов станка без обработки, но и загрузку, ориентацию детали, их фиксацию. Однако, как показала практика, автоматизация универсальных станков, с точки зрения производительности имеет свои пределы, т.е. рост производительности труда составил не выше 60%. Поэтому в дальнейшем стали создавать специальные станки автоматы с применением новых принципов:

Многоинструментальные и многопозиционные автоматы применялись в поточных линиях, что явилось высшей формой первого этапа автоматизации (структурная схема см. табл.1).

Структурная схема автомата №1

Автомат (прутковый)

Двигательный

Передаточный

Исполнительный

механизм

механизм

механизим

Механизм

Механизм

Механизм

рабочих ходов

холостых ходов

управления

Продольныйсуппорт Поперечныйсуппорт1 Поперечныйсуппорт2 Поперечныйсуппорт3 Поперечныйсуппорт4 Поперечныйсуппорт5 Резьбонарезноеприспособ.

Механизмподачипрутка Механизмзажима Механизмповорота шпиндельногоблока Механизмфиксации

Распред. вал Механизмобгона Тормоза Механизмвыключения при отсутствиипрутка

2 На втором этапе – создаётся АЛ (структурная схема см. табл.2).

АЛ называется – автоматическая система машин расположенных в техноло-

гической последовательности, объединённых средствами транспортировки, управления, автоматически выполняющих комплекс операций кроме контроля и наладки.

Создание АЛ потребовало решения более сложных задач. Так одна из них – - Создание автоматической системы межстаночной транспортировки обрабатываемых деталей, с учётом неодинакового ритма работы станков (время на операции разное); а также не совпадение по времени их простоев из-за возникающих неполадок. Система межстаночной транспортировки должна включать не только транспортёры, но и автоматические магазины накопители для создания расходования межоперационных заделов, устройств управления и блокировки системы машин. При этом необходимы не только согласование между собой рабочих циклов отдельных машин, а так же транспортирующих механизмов, но и блокировок на случай всевозможных неполадок (поломки, выход размеров за пределы поля

допуска и т.п.).

На втором этапе автоматизации решается и задача: создание средств автоматизированного контроля , в том числе активного контроля с корректировкой работы станка.

Экономический эффект достигается не только повышением производительности и значительным сокращением затрат ручного труда благодаря автоматизации межстаночной транспортировки, контроля, уборки стружки.

Структурная схема АЛ табл. №2

3 Третьим этапом автоматизации явл-ся комплексная автоматизация производственных процессов – создание автоматических цехов и заводов.

Автоматич. цехом или заводом называется цех или завод, в котором основные производственные процессы осуществляются на АЛ.

Здесь решаются задачи автоматизации межлинейной и межцеховой транспортировки, складирования, уборки и переработки стружки, диспетчерского контроля и управления производством (структура автом. цеха см. схему, рис.3).

Структура автоматического цеха табл. №3

Автомтатический

Автоматические

Системынелинейного

транспорта

управления

А. линия 1 А. линия 2

А. линия i- 1 А. линия i

Элеваторы

Транспортёр

Дозаторы

СУ запасн. деталями

СУ аварийной блокировки

СУ подсчёта продукции диспетчеров

Здесь элементами выполняющие рабочие ходы, являются уже АЛ со своими технологическими роторными машинами, механизмами транспортировки, управления и т.д.

В автом. цехах и заводах межлинейное транспортирование и накопление заделов являются холостыми ходами.

Система управления цеха также выполняет новые более сложные задачи. Важнейшей особенностью комплексной автоматизации производственных процессов как нового этапа технического прогресса явл-ся широкое применение вычислительной техники, которая позволяет решать не только задачу управления

производством, но и гибкого управления тех. процессами.

4 Гибкие автоматизированные системы – какчетвёртый этап автоматизации представляют собой наивысшую четвёртую ступень развития автоматизации тех. процессов. Предназначены для автоматизации тех. процессов со сменным объектом производства, в том числе для единичного и мелкосерийного производства.

Гибкое производство – сложное понятие, включающее в себя целый комплекс компонентов +машинная гибкость – лёгкость перестройки технологических элементов ГАП для производства заданного множества типов деталей.

Гибкость процесса – способность производить заданное множество типов деталей, в том числе из различных деталей, разными способами.

Гибкость по продукту – способность быстрого и экономичного переключения на производство нового продукта.

+ Маршрутная гибкость – способность продолжать обработку заданного множества типов деталей при отказах отдельных технологических элементов ГАП.

Гибкость по объёму – способность ГАП экономически выгодно работать при различных объёмах производства.

Гибкость по расширению – возможность расширения ГАП за счёт введения новых технологических элементов.

Гибкость работы – возможность изменения порядка операции для каждого из типов в детали.

Гибкость по продукции – всё разнообразие изделий, которое способно производить ГАП.

Определяющими явл-ся машинная и маршрутная гибкость. Использование ГАП даёт непосредственный экономический эффект за счёт

высвобождения персонала и увеличения сменности работы и управляющего оборудования.

Обычно в первую смену производится загрузка заготовок, материалов, инструмента, тех заданий, СУ и т.д., это выполняется с участием людей. Вторую и третью смену ГАП работает самостоятельно под наблюдением диспетчера.

Лекция №2

1.3. Технико-экономические особенности автоматизации.

При анализе производства бывает не достаточно знать, на какой стадии механизации или автоматизации находится тот или иной технологический процесс. И тогда степень автоматиз. или механизации (С) определяется уровнем мех.(М) и автом.(А). Оценка уровня М и А осуществляется тремя основными показателями:

- степенью охвата рабочих мех. трудом (С);

- уровнем мех. труда в общих трудозатратах (У Т );

- уровнем мех. и авт. производств. Процессов (У П ). Для мех. обработки и сборки эти показатели:

У Т=

∑ PA k

У П=

∑ РО К П М

∑ РО К П М+ Р(1 −

УТ

Процент возрастания производительности труда за счёт его мех. или автоматизации:

(100 − У Т 2 ) (100− У П 1 ) 100

П М (А )=

− 100

(100 − У Т 1 ) (100− У П 2 )

где - индекс 1 соответствует показателям, полученным до проведения мех. и автом.;

Индекс 2 после их проведения; РА – число рабочих, выполняющих работу с использованием средств автом.;

РО – общее число рабочих на рассматриваемом участке, цехе;

к – коэффициент механизации, выражающий отношение времени мех. труда

к общим затратам времени на данном рабочем времени.

П – коэф. производительности оборудования, характеризующий отношение трудоёмкости изготовления дет. на универсальном оборуд. с наименьшей производительностью, принятым за базу трудоёмкости изготовления этой детали на действующем оборудовании;

М – коэф. Обслуживания, зависящий от количества единиц оборудования, обслуживаемого одним рабочим (при обслуживании оборудования несколькими рабочими М< 1).

Система трёх основных показателей уровня мех. и автом. производственных процессов позволяет:

- оценивать состояние автом. производства, вскрывать резервы для повышения производительности труда;

- сравнивать уровни М. и А. родственных производств и отраслей;

- сравнивать уровни М. и А. соответствующих объектов по периодам внедрения и тем самым определять направления дальнейшего совершенствования производственных процессов;

- планировать уровень автоматизации.

Наряду с выше приведенными показателями может применяться критерий уровня автоматизации производства, количественно характеризующий, в какой мере на данной стадии М. и А. используются возможности экономии затрат труда, т.е. роста произв. труда:

∆ t ЧА

100 =

t ПМ− t ЧА

∆ t ПА

t ПМ− t ПА

где tПМ – трудоёмкость изготовления изделия при полной (комплексной) механизации;

tЧА и tПА – трудоёмкость изготовления при частичной и полной автом.

1.4. Технологичность деталей для автоматизированного производства.

1.4.1. Особенности конструирования изделий в условиях автоматизации про-

изводства.

Конструкция изделия должна обеспечивать его технологичность в изготовлении и сборке. Применение средств автоматизации предусматривает повышенное внимание конструкции изделий с точки зрения облегчения ориентации, позиционирования, сопрягаемости при сборке.

Большинство средств автом. для транспортировки и ориентации деталей действуют на ощупь, т.е. они используют геометрические характеристики деталей для осуществления ориентации и позиционирования.

Учитывая это, можно сказать, что выбор того или иного средства автом. будет основано на анализе классификации объектов производства по геометрическим параметрам (по их назначению и их относительной величине).

Одной из геометрических характеристик явл-ся симметрия.

В некоторых случаях симметрия деталей способствует автоматизации, а в других – делает её невозможной. Пример рис. А1, все детали расположенные справа – симметричны, что делает ориентирование ненужным; рис. А2 – иллюстрирует другую проблему. Если конструктивные особенности каждой детали трудно обнаружить мех. способом, то решение проблемы состоит в нарушении симметрии.

Детали типа цилиндров и дисков явл-ся наиболее вероятными кандидатами на внесение черт ассимметрии, потому что без ориентирующих признаков они могут принимать неопределённое число положений.

Детали прямоугольгой формы обычно выигрывают от симметрии поскольку они могут иметь небольшое число положений.

Рис А1 Ориентация деталей за счётсимметричности.

Рис А2 Ориентация деталей за счётих ассимметричности. а) затруднена б) улучшена

При этом закон распределения суммы этих случайных величин будет иметь Гаусово или нормальное распределение – рис. А5.

Взаимное сцепление деталей (рис. 3)

При загрузке деталей в накопитель или другое устройство навалом, нередко возникает явление сцепления деталей. Типичный пример – пружины . Многие детали имеют отверстия и выступы функционально не связанные друг с другом и не предназначенные для сопряжения. Соотношение размеров этих элементов деталей должно исключать возможность попадания выступа в отверстие и сцепления деталей. (рис. А3).

Внедрение на предприятия технических средств, позволяющих автоматизировать производственные процессы, является базовым условием эффективной работы. Разнообразие современных методов автоматизации расширяет спектр их применения, при этом затраты на механизацию, как правило, оправдываются конечным результатом в виде увеличения объемов изготавливаемой продукции, а также повышения ее качества.

Организации, которые идут по пути технологического прогресса, занимают лидирующие места на рынке, обеспечивают более качественные трудовые условия и минимизируют потребность в сырье. По этой причине крупные предприятия уже невозможно представить без осуществления проектов по механизации - исключения касаются лишь мелких ремесленнических производств, где автоматизация производства себя не оправдывает ввиду принципиального выбора в пользу ручного изготовления. Но и в таких случаях возможно частичное включение автоматики на некоторых этапах производства.

Основные сведения об автоматизации

В широком смысле автоматизация предполагает создание таких условий на производстве, которые позволят без участия человека выполнять определенные задачи по изготовлению и выпуску продукции. При этом роль оператора может заключаться в решении наиболее ответственных задач. В зависимости от поставленных целей, автоматизация технологических процессов и производств может быть полной, частичной или комплексной. Выбор конкретной модели определяется сложностью технической модернизации предприятия за счет автоматической начинки.

На заводах и фабриках, где реализована полная автоматизация, обычно механизированным и электронным системам управления передается весь функционал по контролю над производством. Такой подход наиболее рационален, если рабочие режимы не предполагают изменений. В частичном виде автоматизация внедряется на отдельных этапах производства или при механизации автономного технического компонента, не требуя создания сложной инфраструктуры управления всем процессом. Комплексный уровень автоматизации производства обычно реализуется на определенных участках - это может быть отдел, цех, линия и т. д. Оператор в данном случае контролирует саму систему, не затрагивая непосредственный рабочий процесс.

Системы автоматизированного управления

Для начала важно отметить, что такие системы предполагают полный контроль над предприятием, фабрикой или заводом. Их функции могут распространяться на конкретную единицу оборудования, конвейер, цех или производственный участок. В данном случае системы автоматизации технологических процессов принимают и обрабатывают информацию от обслуживаемого объекта и на основе этих данных оказывают корректирующее воздействие. Например, если работа выпускающего комплекса не отвечает параметрам технологических нормативов, система по специальным каналам изменит его рабочие режимы согласно требованиям.

Объекты автоматизации и их параметры

Главной задачей при внедрении средств механизации производства является поддержание качественных параметров работы объекта, что в результате отразится и на характеристиках продукции. На сегодняшний день специалисты стараются не углубляться в сущность технических параметров разных объектов, поскольку теоретически внедрение систем управления возможно на любой составной части производства. Если рассматривать в этом плане основы автоматизации технологических процессов, то в перечень объектов механизации войдут те же цеха, конвейеры, всевозможные аппараты и установки. Можно лишь сравнивать степени сложности внедрения автоматики, которая зависит от уровня и масштаба проекта.

Относительно параметров, с которыми ведут работу автоматические системы, можно выделить входные и выходные показатели. В первом случае это физические характеристики продукции, а также свойства самого объекта. Во втором - это непосредственно качественные показатели готового продукта.

Регулирующие технические средства

Приборы, обеспечивающие регулирование, применяются в системах автоматизации в виде специальных сигнализаторов. В зависимости от назначения они могут отслеживать и управлять различными технологическими параметрами. В частности, автоматизация технологических процессов и производств может включать сигнализаторы температурных показателей, давления, характеристик потока и т. д. Технически приборы могут быть реализованы как бесшкальные устройства с электрическими контактными элементами на выходе.

Принцип работы регулирующих сигнализаторов также различен. Если рассматривать наиболее распространенные температурные устройства, то можно выделить манометрические, ртутные, биметаллические и терморезисторные модели. Конструкционное исполнение, как правило, обуславливается принципом действия, но немалое влияние на него оказывают и условия работы. В зависимости от направления работы предприятия, автоматизация технологических процессов и производств может проектироваться с расчетом на специфические условия эксплуатации. По этой причине и регулирующие приборы разрабатываются с ориентировкой на использование в условиях повышенной влажности, физического давления или на действие химических веществ.

Программируемые системы автоматизации

Качество управления и контроля производственных процессов заметно повысилось на фоне активного снабжения предприятий вычислительными устройствами и микропроцессорами. С точки зрения промышленных нужд возможности программируемых технических средств позволяют не только обеспечивать эффективное управление технологическими процессами, но и автоматизировать проектирование, а также проводить производственные испытания и эксперименты.

Устройства ЭВМ, которые применяются на современных предприятиях, в режиме реального времени решают задачи регулирования и управления технологическими процессами. Такие средства автоматизации производства называются вычислительными комплексами и работают на принципе агрегатирования. Системы включают в состав унифицированные функциональные блоки и модули, из которых можно составлять различные конфигурации и приспосабливать комплекс к работе в определенных условиях.

Агрегаты и механизмы в системах автоматизации

Непосредственное исполнение рабочих операций берут на себя электрические, гидравлические и пневматические устройства. По принципу работы классификация предполагает функциональные и порционные механизмы. В пищевой промышленности обычно реализуются подобные технологии. Автоматизация производства в этом случае предполагает внедрение электрических и пневматических механизмов, конструкции которых могут включать электроприводы и регулирующие органы.

Электродвигатели в системах автоматизации

Основу исполнительных механизмов нередко формируют электромоторы. По типу управления они могут быть представлены в бесконтактном и контактном исполнениях. Агрегаты, которые управляются от релейно-контактных приборов, при манипуляциях оператором могут изменять направление движения рабочих органов, но скорость выполнения операций остается неизменной. Если предполагается автоматизация и механизация технологических процессов с применением бесконтактных устройств, то используют полупроводниковые усилители - электрические или магнитные.

Щиты и пульты управления

Для установки оборудования, которое должно обеспечивать управление и контроль производственного процесса на предприятиях, монтируются специальные пульты и щиты. На них размещают приборы для автоматического управления и регулирования, контрольно-измерительную аппаратуру, защитные механизмы, а также различные элементы коммуникационной инфраструктуры. По конструкции такой щит может представлять собой металлический шкаф или плоскую панель, на которой и устанавливаются средства автоматизации.

Пульт, в свою очередь, является центром для дистанционного управления - это своего рода диспетчерская или операторская зона. Важно отметить, что автоматизация технологических процессов и производств должна предусматривать и доступ к обслуживанию со стороны персонала. Именно эта функция во многом и определяется пультами и щитами, позволяющими вести расчеты, оценивать производственные показатели и в целом отслеживать рабочий процесс.

Проектирование систем автоматизации

Основным документом, который выступает руководством для технологической модернизации производства с целью автоматизации, является схема. На ней отображается структура, параметры и характеристики устройств, которые в дальнейшем выступят средствами автоматической механизации. В стандартном исполнении схема отображает следующие данные:

  • уровень (масштаб) автоматизации на конкретном предприятии;
  • определение параметров работы объекта, которые должны быть обеспечены средствами контроля и регулирования;
  • характеристики управления - полное, дистанционное, операторское;
  • возможности блокировки исполнительных механизмов и агрегатов;
  • конфигурацию расположения технических средств, в том числе на пультах и щитах.

Вспомогательные средства автоматизации

Несмотря на второстепенную роль, дополнительные устройства обеспечивают важные контрольные и управляющие функции. Благодаря им обеспечивается та самая связь между исполнительными устройствами и человеком. В плане оснащения вспомогательными приборами автоматизация производства может предусматривать кнопочные станции, реле управления, различные переключатели и командные пульты. Существует множество конструкций и разновидностей данных устройств, но все они ориентированы на эргономичное и безопасное управление ключевыми агрегатами на объекте.

1. Уровни автоматизации и их отличительные признаки

Автоматизация производственных процессов может осуществляться на разных уровнях.

Автоматизация имеет так называемый нулевой уровень - если в производстве участие человека исключается только при выполнении рабочих ходов (вращение шпинделя, движение подачи инструментов и др.). Такую автоматизацию назвали механизацией. Можно сказать, что механизация - это автоматизация рабочих ходов. Отсюда следует, что автоматизация предусматривает механизацию.

Автоматизация первого уровня ограничивается созданием устройств, цель применения которых - исключить участие человека при выполнении холостых ходов на отдельно взятом оборудовании. Такая автоматизация называется автоматизацией рабочего цикла в серийном и поточном производстве.

Холостые хоты в норме штучного времени, определяющем трудоемкость операции, учитываются в виде вспомогательного времени t в и времени технического обслуживания t т.об:

где t о – основное время, которое учитывает время рабочих ходов, t о =t p.x ; t в вспомогательное время, включает отвод и подвод инструмента, загрузку оборудования и контроль; t т.об время технического обслуживания, затрачиваемое на смену инструмента, наладку оборудования, устранение отходов и управление; t орг время обслуживания оборудования; t отд – время отдыха рабочего.

На первом уровне автоматизации рабочие машины еще не связаны между собой автоматической связью. Поэтому транспортировка и контроль объекта производства выполняются с участием человека. На этом уровне создаются и применяются станки-автоматы и полуавтоматы. На автоматах рабочий цикл выполняется и повторяется без участия человека. На полуавтоматах для выполнения и повторения рабочего цикла требуется участие человека.

Например, современный токарный многошпиндельный автомат выполняет обтачивание, сверление, зенкерование. развертывание и нарезание резьбы на заготовке из прутка. Такой автомат может заменить до 10 универсальных станков за счет автоматизации и совмещения холостых и рабочих ходов, высокой концентрации операций.

Автоматизация второго уровня - это автоматизация технологических процессов. На этом уровне решаются задачи автоматизации транспортировки, контроля объекта производства, удаления отходов и управления системами машин. В качестве технологического оборудования создаются и применяются автоматические линии, гибкие производственные системы (ГПС).

Автоматической линией называют автоматически действующую систему машин, установленных в технологической последовательности и объединенных средствами транспортировки, загрузки, контроля, управления и устранения отходов. Например, линия по обработке ведущей конической шестерни редуктора автомобиля высвобождает до 20 рабочих и окупается через три года при соответствующей программе выпуска.

Автоматическая линия состоит из технологического оборудования, которое компонуется под определенный вид транспорта и связывается с ним устройствами загрузки (манипуляторами, лотками, подъемниками). Линия включает кроме рабочих позиций и холостые позиции, которые необходимы для осмотра и обслуживания линии.

Если линия включает позиции с участием человека, то ока называется автоматизированной.

Третий уровень автоматизации - комплексная автоматизация, которая охватывает все этапы и звенья производственного процесса, начиная от заготовительных процессов и заканчивая испытаниями и отправкой готовых изделий.


Комплексная автоматизация требует освоения всех предшествующих уровней автоматизации. Она связана с высокой технической оснащенностью производства и большими капитальными затратами. Такая автоматизация эффективна при достаточно больших программах выпуска изделий стабильной конструкции и узкой номенклатуры (производство подшипников, отдельных агрегатов машин, элементов электрооборудования и др.).

Вместе с тем именно комплексная автоматизация позволяет обеспечить развитие производства в целом, так как имеет наибольшую эффективность капитальных затрат. Чтобы показать возможности такой автоматизации, рассмотрим в качестве примера 1зт: магический завод по выпуску автомобильных рам в США. При выпуске до 10 000 рам в сутки завод имеет штат в 160 человек, который в основном состоит из инженеров и наладчиков. При работе без применения комплексной автоматизации для выполнения той же производственной программы понадобилось бы не менее 12 000 человек.

На третьем уровне автоматизации решаются задачи автоматизации складирования и межцеховой транспортировки изделий с автоматическим адресованием, переработки отходов и управления производством на базе широкого применения ЭВМ. На этом уровне участие человека сводится к обслуживанию оборудования и поддержанию его в рабочем состоянии.

2. Развитие автоматизации в направлении технологической гибкости и широкого применения ЭВМ

Гибкие производственные системы представляют собой совокупность технологического оборудования и систем обеспечения его работы в автоматическом режиме при изготовлении изделий изменяющиеся номенклатурой. Развитие ГПС происходит в направлении к безлюдной технологии, обеспечивающей работу оборудования в течение заданного времени без участия опратора.

Для каждого изделия при заданных требованиях к количеству и качеству продукции могут быть разработаны различные варианты ГПС, отличающиеся методами и маршрутами обработки, контроля и сборки, степенью дифференциации и концентрации операций технологического процесса, типами транспортно – загрузочных систем, числом обслуживающих транспортных средств (ОТС), характером межагрегатных и межучастковых связей, конструктивными решениями основных и вспомогательных механизмов и устройств, принципами построения системы управления.

Технический уровень и эффективность ГПС определяется такими показателями, как качество изделий, производительность ГПС и её надежность, структура потоков компонентов, поступающих на ее вход. Именно с учетом этих критериев должны решаться такие задачи, как выбор типа и количества технологического оборудования, межоперационных накопителей, их вместимости и мест их расположения, числа обслуживающих операторов, структуры и параметров транспортно-складской системы и т.п.

Гибкие производственные системы могут быть построены из взаимозаменяемых, из взаимодополняющих ячеек или же смешанным образом.

На рисунке показана схема гибкой системы из двух однотипных взаимозаменяемых обрабатывающих центров (ОЦ). Обрабатывающие центры обслуживаются двумя транспортными тележками (робокарами), поддерживающими движение материальных потоков (деталей, заготовок, инструментов). Обычным является управление в автоматизированном режиме. Если допускаются ручные операции, то оператору должна быть предоставлена определенная свобода действий. Управление совместной работой ОЦ и транспортной системой осуществляется от центральной ЭВМ.

В общем случае управлением робокарами осуществляется от центральной ЭВМ через промежуточное устройство или же от локальной системы управления (ЛСУ). Передача команд на робокары может осуществляться только на остановках, которые делят трассы движения на зоны. ЭВМ разрешает пребывание в конкретной зоне только одного робокара. Максимальная скорость движения может достигать 1 м/с.

Верхняя часть робокара для выполнения операций перегрузки, разгрузки и загрузки может подниматься и опускаться с помощью гидропривода. При отказе или отключении управления от ЭВМ робокар может управляться Л СУ.

Существуют различные варианты робокаров, используемых в качестве транспортных средств в ГПС. Наиболее распространен вариант, когда робокар перемещается вдоль трека (маршрута, трассы) или иной конструкции, уложенной в полу или на его поверхности. Один из вариантов трассирования заключается в том, что на поверхность пола наносят трек в виде полосы (флюоресцентной, светоотражающей, белой с черной окантовкой), а маршрутослежение осуществляется оптоэлектронными методами. Недостатком является необходимость следить за чистотой полосы. Поэтому более распространенным является трассирование робокаров индуктивным проводником, уложенным в канавке на небольшой глубине (порядка 20 мм). Известны и другие интересные решения - с применением, например, телевизионного навигационного оборудования для свободного перемещения в пространстве под управлением ЭВМ.

Источником снабжения робокаров материальными потоками является автоматизированный склад со штабелерами, осуществляющими адресуемый доступ к любой ячейке склада. Склад сам по себе является достаточно сложным объектом управления.


В качестве его системы управления используют программируемые контроллеры, ЭВМ или же специализированного устройства.

Наиболее распространенные робокары с индуктивным маршрутослежением имеют следующие характеристики: грузоподъемность - 500 кг; скорость перемещения - 70 м/мин; ускорения при разгоне и торможении соответственно - 0,5 и 0,7 м/с 2 ; ускорение при аварийном торможении 2,5 м\с 2 ; величина подъема палеты - 130 мм; точность остановки робокара - 30 мм; время цикла перегрузки - 3 с; радиус поворота на максимальной скорости - 0,9 м; время работы без подзарядки аккумуляторов - 6 ч; напряжение аккумуляторной батареи - 24В; мощность каждого из двух приводных двигателей - 600 Вт; собственная масса робокара - 425 кг.

Важным преимуществом робокаров как транспортных средств является отсутствие сколько-нибудь серьезных ограничений на расстановку оборудования, которая может быть осуществлена из соображений наибольшей эффективности по любым критериям. Маршрут робокаров нередко оказывается достаточно сложным, с параллельными ветвями и петлями.


ОРГАНИЗАЦИЯ АВТОМАТИЗИРОВАННОГО ПРОИЗВОДСТВА ПРОДУКЦИИ

ВВЕДЕНИЕ

В настоящее время автоматизация производства является одним из основных факторов современной научно-технической революции, открывающей перед человечеством возможности преобразования природы, создания огромных материальных богатств, умножения творческих способностей человека.

Развитие автоматизации характеризуется рядом крупных достижений. Одним из первых было внедрение сборочных конвейеров Генри Форда в процесс производства. Значительный переворот в автоматизации производства произвели промышленные роботы и персональные компьютеры. Всё это подтолкнуло наше общество на путь нового автоматизированного управления процессом производства.

В настоящее время для эффективного функционирования предприятия повсеместно вводится автоматизация, она становится неотъемлемой частью всего производственного процесса. И это вполне оправданно и выгодно, ведь снижаются затраты и повышается качество продукции.

Автоматизированное производство - это система машин, оборудования, транспортных средств, обеспечивающая строго согласованное во времени выполнение всех стадий изготовления изделий, начиная от получения исходных заготовок и кончая контролем (испытанием) готового изделия и выпуска продукции через равные промежутки времени.

Целью данной работы является рассмотреть основные принципы управления автоматизированным производством, а также определить эффективность автоматизированных систем управления.

    ВНЕДРЕНИЕ АВТОМАТИЗАЦИИ НА ПРОИЗВОДСТВЕ

      Сущность автоматизированного производства, его состав, применяемость, эффективность функционирования

Автоматизация производства – процесс, при котором функции по управлению производством и контролю за ним, ранее выполнявшиеся человеком, передаются приборам и автоматическим устройствам. Автоматизация – это основа развития современной промышленности, генеральное направление научно-технического прогресса. Цель автоматизации производства заключается в повышении эффективности труда, улучшении качества выпускаемой продукции, в создании условий для оптимального использования всех ресурсов производства.

Автоматизированное производство возникло в некоторых отраслях промышленности (например, в химической и пищевой) уже в начале 20 в. в основном на таких производственных участках, где технология вообще не может быть организована по-другому .

Этапы развития автоматизации производства определяются развитием средств производства, электронно-вычислительной техникой, научными методами технологии и организации производства.

На первом этапе были созданы автоматические линии и жесткие заводы-автоматы. Второй период развития автоматизации характеризуется появлением электронно-программного управления, созданием станков с числовым программным управлением (далее ЧПУ), обрабатывающих центров и автоматических линий. Предпосылкой развития автоматизации производства на третьем этапе послужили новые возможности ЧПУ на базе микропроцессорной техники, позволившие создать новую систему машин, которая сочетала высокую производительность автоматических машин с требованиями гибкости производственного процесса. На более высоком уровне автоматизации создаются автоматические заводы будущего, оснащённые оборудованием с искусственным интеллектом

В автоматизированном производстве работа оборудования, агрегатов, аппаратов, установок происходит автоматически по заданной программе, а рабочий осуществляет контроль за их работой, устраняет отклонения от заданного процесса, производит наладку автоматизированного оборудования.

Различают частичную, комплексную и полную автоматизацию.

Частичная автоматизация производства, точнее - автоматизация отдельных производственных операций, осуществляется в тех случаях, когда управление процессами вследствие их сложности или скоротечности практически недоступно человеку и когда простые автоматические устройства эффективно заменяют его. Частично автоматизируется, как правило, действующее производственное оборудование. По мере совершенствования средств автоматизации и расширения сферы их применения было установлено, что частичная автоматизация наиболее эффективна тогда, когда производственное оборудование разрабатывается сразу как автоматизированное.

При комплексной автоматизация производства участок, цех, завод, электростанция функционируют как единый взаимосвязанный автоматизированный комплекс. Комплексная Автоматизация производства охватывает все основные производственные функции предприятия, хозяйства, службы; она целесообразна лишь при высокоразвитом производстве на базе совершенной технологии и прогрессивных методов управления с применением надёжного производственного оборудования, действующего по заданной или самоорганизующейся программе, функции человека при этом ограничиваются общим контролем и управлением работой комплекса.

Полная автоматизация производства - высшая ступень автоматизации, которая предусматривает передачу всех функций управления и контроля комплексно-автоматизированным производством автоматическим системам управления. Она проводится тогда, когда автоматизируемое производство рентабельно, устойчиво, его режимы практически неизменны, а возможные отклонения заранее могут быть учтены, а также в условиях недоступных или опасных для жизни и здоровья человека.

Основой компрессорных систем машин выступают автоматические линии (далее АЛ). Автоматические линии представляют собой систему согласованно работающих и автоматически управляемых станков (агрегатов), транспортных средств и контрольных механизмов, расположенных по ходу технологического процесса, с помощью которых обрабатываются детали или собираются изделия, накапливаются заделы, удаляются отходы по заранее заданному технологическому процессу. Роль рабочего на АЛ сводится к наблюдение за работой линии, наладке отдельных механизмов, а иногда подаче заготовки на первую операцию и снятию готового изделия с последней операции.

АЛ служат для выполнения в автоматическом режиме определенных операций (стадий) производственного процесса и зависят от вида исходных материалов (заготовок), габаритов, массы и технологической сложности изготовляемых изделий.

В комплекс АЛ входит транспортная система, предназначенная для подачи заготовок со склада к стендам, перемещения подвесного технологического оборудования от одного стенда к другому, для транспортировки со стендов готовых изделий на главную линию или склад готовой продукции.

В зависимости от способа обеспечения ритмичности различают синхронные (жёсткие) АЛ, для которых характерны жесткая межагрегатная связь и единый цикл работы станков, и несинхронные (гибкие) АЛ с гибкой межагрегатной связью. Каждый станок в этом случае снабжён индивидуальным магазином-накопителем мажоперационных заделов .

Структурная компоновка АЛ зависит от объёма производства и характера технологического процесса. Существуют линии параллельного и последовательного действия, однопоточные, многопоточные, смешанные (с ветвящимся потоком) (рис. 1.1.1).

Рис. 1.1.1 Структурные компоновки автоматических линий: а - однопоточная последовательного действия; б - однопоточная параллельного действия; в - многопоточная; г - смешанная (с ветвящимся потоком); 1 - рабочие агрегаты: 2 - распределительные устройства.

АЛ параллельного действия применяются для выполнения одной операции, когда продолжительность её значительно превышает необходимый темп выпуска. Продукт переработки автоматически распределяется (из магазина или бункера) по агрегатам линии и после обработки приёмными устройствами собирается и направляется на последующие операции. Многопоточные АЛ представляют собой систему из АЛ параллельного действия, предназначенную для выполнения нескольких технологических операций, каждая из которых по продолжительности больше заданного темпа выпуска. В единую систему могут быть объединены несколько АЛ последовательного или параллельного действия. Такие системы называются автоматическими участками, цехами или производствами.

Автоматизированные участки (цехи) включают в себя автоматические поточные линии, автономные автоматические комплексы, автоматические транспортные системы, автоматические складские системы; автоматические системы контроля качества, автоматические системы управления и т.д.

Рис. 1.1.1 Структурный состав автоматизированного производственного подразделения

Автоматические линии широко применяются в пищевой промышленности, производстве бытовых изделий, в электротехнической, радиотехнической и химической отраслях промышленности. Наибольшее распространение автоматические линии получили в машиностроении. Многие из них изготовляются непосредственно на предприятиях с использованием уже действующего оборудования.

Автоматические линии для обработки строго определённых по форме и размерам изделий называются специальными; при изменении объекта производства такие линии заменяют или переделывают. Более широкими эксплуатационными возможностями обладают специализированные автоматические линии для обработки однотипной продукции в определённом диапазоне параметров. При изменении объекта производства в таких линиях, как правило, лишь перенастраивают отдельные агрегаты и изменяют режимы их работы; основное технологическое оборудование в большинстве случаев может быть использовано для изготовления новой однотипной продукции. Специальные и специализированные автоматические линии применяются главным образом в массовом производстве.

В серийном производстве автоматические линии должны обладать универсальностью и обеспечивать возможность быстрой переналадки для изготовления различной однотипной продукции. Такие автоматические линии называют универсальными быстропереналаживаемыми, или групповыми. Несколько меньшая производительность универсальных автоматические линии по сравнению со специальными компенсируется их быстрой переналадкой для производства широкой номенклатуры продукции .

      Эффективность функционирования автоматизированного производства

При проведении работ на конкретном предприятии с целью перехода на автоматизированное производство возникает вопрос оценке капитальных затрат на внедрение средств автоматизации и определении эффективности этих затрат. Для этого необходимо установить структуру затрат на создание автоматизированного производства и процедуру определения эффективности этих затрат.

Соизмерение затрат и результатов при создании автоматизированного производства является частью общей проблемы, рассматриваемой в теории экономической эффективности капитальных вложений.

Технический уровень современного производства позволяет автоматизировать почти любую технологическую операцию. Однако далеко не всегда автоматизация при этом будет экономически эффективной. Автоматизация производства может осуществляться с применением различного оборудования, разных средств автоматизации, транспортных и контрольных устройств, любой компоновки технологического оборудования и т.д. Поэтому необходимо правильно выбрать варианты автоматизации производства и дать комплексную оценку их экономической эффективности.

Экономическая эффективность автоматизации производства оценивается показателями в стоимостном и натуральном выражении. К основным стоимостным показателям относятся себестоимость продукции, капитальные затраты, приведённые затраты и срок окупаемости дополнительных капитальных вложений в средства автоматизации.Реферат >> Информатика

Собственностью предприятия. Необходимо построить автоматизированную информационную систему управления организационно техническими... может быть использован в хозяйственной деятельности Организации при производстве продукции , выполнении работ, оказании услуг...

  • Организация основного производства (1)

    Реферат >> Менеджмент

    Вспомогательные. Основные цехи осуществляют процессы производства продукции , являющейся специализацией предприятия. Так, на... процесса. Существуют следующие методы организации производства : непоточный; поточный; автоматизированный и другие. Непоточный метод...

  • Организация поточного производства с применением однопредметных прерывно-поточных линий в ОАО "Белгородасбестоцемент"

    Курсовая работа >> Экономика

    Транспортными партиями с помощью механизированных или автоматизированных транспортных средств через одинаковый промежуток... ; разработка и создание новых видов продукции ; четкая организация производства и строгий режим экономии энергоресурсов, материальных...

  • Организация поточного производства на предприятии

    Контрольная работа >> Менеджмент

    Ритмом). Характерные признаки организации поточного производства : расчленение процесса изготовления продукции на ряд составных... транспортными партиями с помощью механизированных или ав­томатизированных транспортных средств (конвейеров) через одинаковый...

  • Представляет собой процедуру, в рамках которой функции контроля и управления, выполнявшиеся человеком, передаются приборам и устройствам. За счет этого существенно повышается результативность труда и качество продукции. Кроме этого, обеспечивается сокращение доли рабочих, привлеченных к разным промышленным сферам. Рассмотрим далее, что собой представляют автоматика и автоматизация производственных процессов.

    Историческая справка

    Самостоятельно функционирующие приборы - прообразы современных автоматических системы - стали появляться еще в древности. Однако до самого 18 столетия была широко распространена кустарная и полукустарная деятельность. В этой связи такие "самодействующие" устройства не получили практического применения. В конце 18-го - начале 19-го вв. произошел резкий скачок объемов и уровня производства. Промышленная революция создала предпосылки для усовершенствования приемов и орудий труда, приспособления оборудования для замены человека.

    Механизация и автоматизация производственных процессов

    Изменения, которые вызвала коснулись в первую очередь дерево- и металлообработки, прядильных, ткацких заводов и фабрик. Механизация и автоматизация активно изучались К. Марксом. Он видел в них принципиально новые направления прогресса. Он указывал на переход от использования отдельных станков к автоматизации их комплекса. Маркс говорил о том, что за человеком должны закрепляться сознательные функции контроля и управления. Работник становится рядом с производственным процессом и регулирует его. Главными достижениями того времени стали изобретения русского ученого Ползунова и английского новатора Уатта. Первый создал автоматический регулятор для питания парового котла, а второй - центробежный контроллер скорости паровой машины. Достаточно продолжительное время оставалась ручной. До внедрения автоматизации замена физического труда осуществлялась посредством механизации вспомогательных и основных процессов.

    Ситуация сегодня

    На современном этапе развития человечества системы автоматизации производственных процессов основываются на использовании компьютеров и различного программного обеспечения. Они способствуют сокращению степени участия людей в деятельности или полностью исключают его. В задачи автоматизации производственных процессов входит повышение качества выполнения операций, сокращение времени, которое на них требуется, снижение стоимости, увеличение точности и стабильности действий.

    Основные принципы

    Сегодня средства автоматизации производственных процессов внедрены во многие сферы промышленности. Независимо от сферы и объема деятельности компаний, практически в каждой из них используются программные устройства. Существуют различные уровни автоматизации производственных процессов. Однако для любого из них действуют единые принципы. Они обеспечивают условия для эффективного выполнения операций и формулируют общие правила управления ими. К принципам, в соответствии с которыми осуществляется автоматизация производственных процессов, относят:

    1. Согласованность. Все действия в рамках операции должны сочетаться друг с другом, идти в определенной последовательности. В случае рассогласованности вероятно нарушение хода процесса.
    2. Интеграция. Автоматизируемая операция должна вписываться в общую среду предприятия. На той или иной стадии интеграция осуществляется по-разному, однако суть этого принципа неизменна. Автоматизация производственных процессов на предприятиях должна обеспечивать взаимодействие операции с внешней средой.
    3. Независимость исполнения. Автоматизируемая операция должна осуществляться самостоятельно. Участие человека в ней не предусматривается, или оно должно быть минимально (только контроль). Работник не должен вмешиваться в операцию, если она осуществляется согласно установленным требованиям.

    Указанные принципы конкретизируются в соответствии с уровнем автоматизации того или иного процесса. Для операций устанавливаются дополнительные пропорциональности, специализации и так далее.

    Уровни автоматизации

    Их принято классифицировать в соответствии с характером управления компании. Оно, в свою очередь, может быть:

    1. Стратегическим.
    2. Тактическим.
    3. Оперативным.

    Соответственно, существует:

    1. Нижний уровень автоматизации (исполнительский). Здесь управление касается регулярно совершаемых операций. Автоматизация производственных процессов ориентирована на исполнение оперативных функций, поддержание установленных параметров, сохранение заданных режимов работы.
    2. Тактический уровень. Здесь обеспечивается распределение функций между операциями. В качестве примеров можно привести планирование производства или обслуживания, управление документами или ресурсами и так далее.
    3. Стратегический уровень. На нем осуществляется управление всей компанией. Автоматизация производственных процессов стратегического назначения обеспечивает решение прогнозных и аналитических вопросов. Она необходима для поддержания деятельности высшего административного звена. Этот уровень автоматизации обеспечивает стратегическое и финансово-хозяйственное управление.

    Классификация

    Автоматизация обеспечивается за счет использования разнообразных систем (OLAP, CRM, ERP и пр.). Все они разделяются на три основных типа:

    1. Неизменяемые. В этих системах последовательность действий устанавливается в соответствии с конфигурацией оборудования либо условиями процесса. Она не может изменяться в ходе операции.
    2. Программируемые. В них возможно изменение последовательности в зависимости от конфигурации процесса и заданной программы. Выбор той или иной цепочки действий осуществляется посредством специального набора инструментов. Они читаются и интерпретируются системой.
    3. Самонастраиваемые (гибкие). Такие системы могут осуществлять выбор нужных действий по ходу работы. Изменения конфигурации операции происходит в соответствии с информацией о течении операции.

    Все эти типы могут использоваться на всех уровнях отдельно либо в комплексе.

    Виды операций

    В каждой экономической отрасли присутствуют организации, выпускающие продукцию или предоставляющие услуги. Их можно разделить на три категории в соответствии с "удаленностью" в цепи переработки ресурсов:

    1. Добывающие или производящие - сельскохозяйственные, нефтегазодобывающие предприятия, например.
    2. Перерабатывающие природное сырье организации. При изготовлении продукции они используют материалы добытые или созданные компаниями из первой категории. К ним, например, относятся предприятия электронной, автомобильной промышленности, электростанции и так далее.
    3. Обслуживающие компании. Среди них - банки, медицинские, образовательные учреждения, предприятия общепита и пр.

    Для каждой группы можно выделить операции, связанные с предоставлением услуг или выпуском продукции. К ним относят процессы:

    1. Управления. Эти процессы обеспечивают взаимодействие внутри предприятия и способствуют формированию отношений компании с заинтересованными участниками оборота. К последним, в частности, относят надзорные органы, поставщиков, потребителей. В группу бизнес-процессов входят, например, маркетинг и продажи, взаимодействие с покупателями, финансовое, кадровое, материальное планирование и так далее.
    2. Анализа и контроля. Эта категория связана со сбором и обобщением сведений о выполнении операций. В частности, к таким процессам относят операционное управление, контроль качества, оценку запасов и пр.
    3. Проектирования и разработки. Эти операции связаны со сбором и подготовкой исходных сведений, реализацией проекта, контролем и анализом результатов.
    4. Производства. Эта группа включает в себя операции, связанные с непосредственным выпуском продукции. К ним относят, в том числе, планирование потребности и мощности, логистику, обслуживание.

    Большая часть этих процессов сегодня автоматизирована.

    Стратегия

    Необходимо отметить, что автоматизация производственных процессов отличается сложностью и трудоемкостью. Для достижения поставленных целей необходимо руководствоваться определенной стратегией. Она способствует улучшению качества выполняемых операций и получению от деятельности желаемые результаты. Особое значение сегодня имеет грамотная автоматизация производственных процессов в машиностроении. Стратегический план можно коротко представить следующим образом:


    Преимущества

    Механизация и автоматизация различных процессов позволяет значительно повысить качество товаров и управления производством. Среди прочих преимуществ следует назвать:

    1. Увеличение скорости выполнения повторяющихся операций. За счет снижения степени участия человека одни и те же действия могут осуществляться быстрее. Автоматизированные системы обеспечивают большую точность и сохраняют работоспособность вне зависимости от продолжительности смены.
    2. Повышение качества работы. При снижении степени участия людей уменьшается или исключается влияние человеческого фактора. Это существенно ограничивает вариации выполнения операций, что, в свою очередь, предотвращает множество ошибок и повышает качество и стабильность работы.
    3. Увеличение точности управления. Использование информационных технологий позволяет сохранять и учитывать в дальнейшем больший объем сведений об операции, чем при ручном контроле.
    4. Ускоренное принятие решений при типовых ситуациях. Это способствует улучшению характеристик операции и предотвращает несоответствия на следующих этапах.
    5. Параллельность выполнения действий. дают возможность осуществлять несколько операций в одно время без ущерба для точности и качества работы. Это ускоряет деятельность и улучшает качество результатов.

    Недостатки

    Несмотря на очевидные преимущества, автоматизация может быть далеко не всегда целесообразной. Именно поэтому перед ее осуществлением необходим всесторонний анализ и оптимизация. После этого может сложиться так, что автоматизация не потребуется или будет невыгодна в экономическом смысле. Ручное управление и выполнение процессов может стать более предпочтительным в следующих случаях:

    Заключение

    Механизация и автоматизация, несомненно, имеют огромное значение для производственной сферы. В современном мире все меньше операций выполняется вручную. Однако и сегодня в ряде отраслей не обойтись без такого труда. Автоматизация особенно эффективна на крупных предприятиях, где выпускается продукция для массового потребителя. Так, например, на автомобильных заводах в операциях участвует минимальное количество людей. При этом они, как правило, осуществляют контроль за ходом процесса, не участвую в нем непосредственно. Модернизация промышленности в настоящее время идет очень активно. Автоматизация производственных процессов и производств считается сегодня наиболее эффективным способом повышения качества продукции и увеличения объема ее выпуска.